Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow

被引:56
作者
Bhargava, R. [2 ]
Beg, O. Anwar [1 ]
Sharma, S. [2 ]
Zueco, J. [3 ]
机构
[1] Sheffield Hallam Univ, Dept Mech Engn, Sheffield S1 1WB, S Yorkshire, England
[2] Indian Inst Technol, Dept Math, Roorkee 247667, Uttar Pradesh, India
[3] Univ Politecn Cartagena, Dept Ingn Term & Fluidos, ETS Ingenieros Ind Campus Muralla del Mar, Murcia 30203, Spain
关键词
Biomagnetic fluid; Viscous; Micropolar; Non-Newtonian hemodynamics; Finite element method; Physiological fluid mechanics; BLOOD-FLOW; MAGNETIC-FIELD; FLUID-FLOW; HEMODYNAMICS; ORIENTATION; FIBRINOGEN; TRANSPORT; CARTILAGE; RHEOLOGY; ARTERIES;
D O I
10.1016/j.cnsns.2009.05.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the two-dimensional fully-developed steady, viscous hydrodynamic flow of a deoxygenated biomagnetic micropolar fluid, in an (X, Y) coordinate system. The momentum conservation equations with zero-pressure gradient are extended to incorporate the X- and Y-components of the biomagnetic body force term with appropriate boundary conditions. The equations are non-dimensionalized using a set of transformations. A finite element solution is obtained to the resulting non-dimensional model and the effects of biomagnetic number (Nil), micropolar microinertia parameter (B) and micropolar viscosity ratio parameter (R) on the X- and Y-direction velocity profiles and microrotation (N) is studied in detail. Translational velocities (UV) are seen to be reduced with an increase in micropolarity (R) and also biomagnetic effects (NH). Conversely the velocities are increased with a rise in microinertia parameter (B). Several special cases, e.g. Newtonian biomagnetic physiological flow, are also discussed. The model finds applications in blood flow in biomedical device technology (e.g. oxygenators), hemodynamics under strong external magnetic fields, magnetic drug carrier analysis, etc. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1210 / 1223
页数:14
相关论文
共 48 条
[1]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[2]  
Beg O. Anwar, 2007, Nonlinear Analysis Modelling and Control, V12, P157
[3]  
Beg O. A., 2008, EMIRATES J ENG RES, V13, P51
[4]   Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium [J].
Beg, O. Anwar ;
Bhargava, R. ;
Rawat, S. ;
Halim, Kalim ;
Takhar, H. S. .
MECCANICA, 2008, 43 (04) :391-410
[5]   Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcy porous media with thermophysical effects [J].
Beg, O. Anwar ;
Takhar, H. S. ;
Bhargava, R. ;
Rawat, S. ;
Prasad, V. R. .
PHYSICA SCRIPTA, 2008, 77 (06)
[6]   Mathematical Modeling of Biomagnetic Flow in a Micropolar Fluid-Saturated Darcian Porous Medium [J].
Beg, O. Anwar ;
Takhar, H. S. ;
Bhargava, R. ;
Sharma, S. ;
Hung, T. -K. .
INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2007, 34 (05) :403-424
[7]  
Beg O. Anwar, 2008, J KING ABDUL AZIZ U, V19, P63
[8]  
BEG OA, 2006, 5 WORLD C BIOM MUN G
[9]  
Bhargava R, 2007, MECCANICA, V42, P247, DOI [10.1007/s11012-007-9052-z, 10.1007/S11012-007-9052-Z]
[10]   ANALYSIS OF AN INTENSIVE MAGNETIC-FIELD ON BLOOD-FLOW [J].
CHEN, IIH ;
SAHA, S .
JOURNAL OF BIOELECTRICITY, 1984, 3 (1-2) :293-298