Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteries

被引:1
|
作者
Gladka, Dorota [1 ]
Krajewski, Mariusz [1 ]
Mlynarska, Sandra [1 ]
Galinska, Justyna [1 ]
Zygadlo-Monikowska, Ewa [1 ]
机构
[1] Warsaw Univ Technol, Fac Chem, Ul Noakowskiego 3, PL-00664 Warsaw, Poland
关键词
lithium borate salts; polymer electrolytes; ionic conductivity; lithium transference number; ionic liquids; POLYMER ELECTROLYTES; TRANSFERENCE NUMBERS; LIQUID ELECTROLYTES; CONDUCTIVITY; HYBRID; STABILITY; LIBF4;
D O I
10.1016/j.electacta.2017.05.170
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Bis(carboxytrifluoroborate lithium) salts [R(CH2COOBF3Li)(2)] with oxyethylene groups R of oligomeric molar masses [R = O(CH2CH2O)(n), where n = 3 or 11, BCB3 and BCB11, respectively] were synthesized via reaction of carboxylates salts with boron fluoride. The new salts were characterized by spectroscopic analysis. The physical properties of the salts were determined by oxyethylene chain length. For n = 3 the salt was crystalline with m(p) = 197 degrees C and for n = 11 it showed properties of an ionic liquid at ambient temperature. Their thermal stability was at least 250 degrees C. The values of lithium-ion transference numbers (T+) of the solutions in polar aprotic solvents, determined by a well established steady-state technique, were in the range of 0.2-0.6. Electrochemical impedance spectroscopy analysis of solid polymer electrolytes (SPEs) based on PEO and studied salts with different concentration (from 24 to 94 wt %) was carried out. The ionic conductivity of SPEs was in the order of 10(-8)-10(-7) S cm(-1) at room temperature and 10(-4) S cm(-1) at 80 degrees C. A distinguishing feature of SPEs with the studied new salts is the high immobilization of anions, which causes almost a monoconducting character of charge transport. Lithium transference numbers (T+) exceed 0.9. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:625 / 633
页数:9
相关论文
共 50 条
  • [1] New Lithium Salts in Electrolytes for Lithium-Ion Batteries (Review)
    Bushkova, O. V.
    Yaroslavtseva, T. V.
    Dobrovolsky, Yu. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2017, 53 (07) : 677 - 699
  • [2] Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review
    Chattopadhyay, Jayeeta
    Pathak, Tara Sankar
    Santos, Diogo M. F.
    POLYMERS, 2023, 15 (19)
  • [3] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Yoon, Jeong Hoon
    Cho, Won-Jang
    Kang, Tae hui
    Lee, Minjae
    Yi, Gi-Ra
    MACROMOLECULAR RESEARCH, 2021, 29 (08) : 509 - 518
  • [4] Organosilicon Based Electrolytes for Lithium-Ion Batteries
    Qin Xueying
    Wang Jinglun
    Zhang Lingzhi
    PROGRESS IN CHEMISTRY, 2012, 24 (05) : 810 - 822
  • [5] Synthesis and properties of a new class of fluorine-containing dilithium salts for lithium-ion batteries
    Chakrabarti, Amartya
    Filler, Robert
    Mandal, Braja K.
    SOLID STATE IONICS, 2010, 180 (40) : 1640 - 1645
  • [6] Ionic liquid based Fluoropolymer solid electrolytes for Lithium-ion batteries
    Serra, J. P.
    Pinto, R. S.
    Barbosa, J. C.
    Correia, D. M.
    Goncalves, R.
    Silva, M. M.
    Lanceros-Mendez, S.
    Costa, C. M.
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 25
  • [7] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Jeong Hoon Yoon
    Won-Jang Cho
    Tae Hui Kang
    Minjae Lee
    Gi-Ra Yi
    Macromolecular Research, 2021, 29 : 509 - 518
  • [8] The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries
    Badi, Nacer
    Theodore, Azemtsop Manfo
    Alghamdi, Saleh A.
    Al-Aoh, Hatem A.
    Lakhouit, Abderrahim
    Singh, Pramod K.
    Norrrahim, Mohd Nor Faiz
    Nath, Gaurav
    POLYMERS, 2022, 14 (15)
  • [9] Inorganic Solid Electrolytes for the Lithium-Ion Batteries
    Lu, Jiasheng
    Chen, Jiamiao
    He, Tianxian
    Zhao, Jingwei
    Liu, Jun
    Huo, Yanping
    PROGRESS IN CHEMISTRY, 2021, 33 (08) : 1344 - 1361
  • [10] Novel hyperbranched PEU polymer electrolytes for lithium-ion batteries
    Bai Ying
    Pan Chun-Hua
    Wu Feng
    Wu Chuan
    Ye Lin
    Feng Zeng-Guo
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2007, 28 (09): : 1796 - 1800