共 33 条
A Practical Large-Capacity Three-Stage Buffered Clos-Network Switch Architecture
被引:12
|作者:
Xia, Yu
[1
]
Hamdi, Mounir
[2
]
Chao, H. Jonathan
[3
]
机构:
[1] Sichuan Normal Univ, Coll Comp Sci, Chengdu, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[3] NYU, Polytech Inst, Dept Elect & Comp Engn, Brooklyn, NY USA
关键词:
Packet switch;
distributed shared-memory;
Clos network;
batch scheduling;
100-PERCENT THROUGHPUT;
SCHEDULING ALGORITHM;
INPUT;
ROUTERS;
D O I:
10.1109/TPDS.2015.2408614
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
This paper proposes a three-stage buffered Clos-network switch (TSBCS) architecture along with a novel batch scheduling (BS) mechanism. We found that TSBCS/BS can be mapped to a "fat" combined input-crosspoint queued (CICQ) switch. Consequently, the well-studied CICQ scheduling algorithms can be directly applied in TSBCS. Moreover, BS drastically reduces the time complexity of TSBCS scheduling when compared with ordinary CICQ switches of the same number of switch ports, which enables us to build a larger-capacity switch with reasonable scheduling complexity. We further show that TSBCS/BS can achieve 100 percent throughput under any admissible traffic if a stable CICQ scheduling algorithm is used. Direct cell forwarding schemes are proposed to overcome the performance drawback of BS under light traffic loads. With extensive simulations, we show that the performance of TSBCS/BS is comparable to that of output-queued switches and the latter are usually considered as theoretical optimal.
引用
收藏
页码:317 / 328
页数:12
相关论文