A posteriori and a priori error analysis or finite element approximations of self-adjoint elliptic eigenvalue problems

被引:95
|
作者
Larson, MG [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
关键词
eigenvalue problem; finite element method; a priori and a posteriori error estimates; stability analysis;
D O I
10.1137/S0036142997320164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. The analysis consists of three steps. First we prove a posteriori estimates for the error in the approximate eigenvectors and eigenvalues. The error in the eigenvectors is measured both in the L-2 and energy norms. In these estimates the error is bounded in terms of the mesh size, a stability factor, and the residual, obtained by inserting the approximate eigenpair into the differential equation. The stability factor describes relevant stability properties of the continuous problem and we give a precise estimate of its size in terms of the spectrum of the continuous problem, the mesh size, and the choice of norm. Next we prove an a priori estimate of the residual in terms of derivatives of the exact eigenvectors and the mesh size. Finally we obtain precise a priori error estimates by combination of the a posteriori error estimates with the a priori residual estimate. The analysis shows that the a posteriori estimates are optimal and may be used for quantitative error estimation and design of adaptive algorithms.
引用
收藏
页码:608 / 625
页数:18
相关论文
共 50 条
  • [1] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Heuveline, V
    Rannacher, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 107 - 138
  • [2] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Vincent Heuveline
    Rolf Rannacher
    Advances in Computational Mathematics, 2001, 15 : 107 - 138
  • [3] A priori and a posteriori error estimates of finite-element approximations for elliptic optimal control problem with measure data
    Shakya, Pratibha
    Sinha, Rajen Kumar
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (02) : 241 - 264
  • [4] A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems
    Sinha, Rajen Kumar
    Deka, Bhupen
    CALCOLO, 2006, 43 (04) : 253 - 278
  • [5] Robust error estimates for approximations of non-self-adjoint eigenvalue problems
    Giani, Stefano
    Grubisic, Luka
    Miedlar, Agnieszka
    Ovall, Jeffrey S.
    NUMERISCHE MATHEMATIK, 2016, 133 (03) : 471 - 495
  • [6] Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis
    S. Bartels
    C. Carstensen
    G. Dolzmann
    Numerische Mathematik, 2004, 99 : 1 - 24
  • [7] Remarks on computable a priori error estimates for finite element solutions of elliptic problems
    Takayasu, Akitoshi
    Liu, Xuefeng
    Oishi, Shin'ichi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2014, 5 (01): : 53 - 63
  • [8] Quadrature finite element method for elliptic eigenvalue problems
    Solov’ev S.I.
    Lobachevskii Journal of Mathematics, 2017, 38 (5) : 856 - 863
  • [9] Explicit a posteriori and a priori error estimation for the finite element solution of Stokes equations
    Xuefeng Liu
    Mitsuhiro T. Nakao
    Chun’guang You
    Shin’ichi Oishi
    Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 545 - 559
  • [10] Explicit a posteriori and a priori error estimation for the finite element solution of Stokes equations
    Liu, Xuefeng
    Nakao, Mitsuhiro T.
    You, Chun'guang
    Oishi, Shin'ichi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 38 (02) : 545 - 559