A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods

被引:145
|
作者
Kuzmin, Dmitri [1 ]
机构
[1] Dortmund Univ Technol, Inst Appl Math LS 3, D-44227 Dortmund, Germany
关键词
Hyperbolic conservation laws; Finite elements; Discontinuous Galerkin methods; Hierarchical bases; Slope limiting; HYPERBOLIC CONSERVATION-LAWS; COMPRESSIBLE FLOWS; EQUATIONS; GRIDS; EULER;
D O I
10.1016/j.cam.2009.05.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new approach to slope limiting for discontinuous Galerkin methods on arbitrary meshes is introduced. A local Taylor basis is employed to express the approximate solution in terms of cell averages and derivatives at cell centroids. In contrast to traditional slope limiting techniques, the upper and lower bounds for admissible variations are defined using the maxima/minima of centroid values over the set of elements meeting at a vertex. The correction factors are determined by a vertex-based counterpart of the Barth-Jespersen limiter. The coefficients in the Taylor series expansion are limited in a hierarchical manner, starting with the highest-order derivatives. The loss of accuracy at smooth extrema is avoided by taking the maximum of correction factors for derivatives of order p >= 1 and higher. No free parameters, oscillation detectors, or troubled cell markers are involved. Numerical examples are presented for 2D transport problems discretized using a DG method. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3077 / 3085
页数:9
相关论文
共 50 条
  • [21] Under-Resolved Simulation of Turbulent Flows Using a p-adaptive Discontinuous Galerkin Method
    Bassi, F.
    Colombo, A.
    Crivellini, A.
    Franciolini, M.
    Ghidoni, A.
    Manzinali, G.
    Noventa, G.
    PROGRESS IN TURBULENCE VIII, 2019, 226 : 157 - 162
  • [22] A free-energy stable p-adaptive nodal discontinuous Galerkin for the Cahn-Hilliard equation
    Ntoukas, Gerasimos
    Manzanero, Juan
    Rubio, Gonzalo
    Valero, Eusebio
    Ferrer, Esteban
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 442
  • [23] Implicit method and slope limiter in AHMR procedure for high order discontinuous Galerkin methods for compressible flows
    Schall, Eric
    Chauchat, Nicolas
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 371 - 391
  • [24] p-adaptive discontinuous Galerkin method for the shallow water equations with a parameter-free error indicator
    Faghih-Naini, Sara
    Aizinger, Vadym
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [25] Crushing of vertex-based hierarchical honeycombs with triangular substructures
    Zhang, Dahai
    Fei, Qingguo
    Liu, Jingze
    Jiang, Dong
    Li, Yanbin
    THIN-WALLED STRUCTURES, 2020, 146
  • [26] p-adaptive discontinuous Galerkin method for the shallow water equations with a parameter-free error indicator
    Sara Faghih-Naini
    Vadym Aizinger
    GEM - International Journal on Geomathematics, 2022, 13
  • [27] p-adaptive discontinuous Galerkin solution of transonic viscous flows with variable time step-size
    Colombo, A.
    Crivellini, A.
    Ghidoni, A.
    Massa, F. C.
    Noventa, G.
    COMPUTERS & FLUIDS, 2024, 282
  • [28] Anisotropic slope limiting for discontinuous Galerkin methods
    Aizinger, Vadym
    Kosik, Adam
    Kuzmin, Dmitri
    Reuter, Balthasar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 84 (09) : 543 - 565
  • [29] Vertex-based adaptive synchronization of complex networks
    De Lellis, Pietro
    Di Bernardo, Mario
    Garofalo, Francesco
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 2526 - 2529
  • [30] A p-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of Incompressible Transitional Flows
    F. Bassi
    L. Botti
    A. Colombo
    A. Crivellini
    M. Franciolini
    A. Ghidoni
    G. Noventa
    Flow, Turbulence and Combustion, 2020, 105 : 437 - 470