Denoising Smooth Signals Using a Bayesian Approach: Application to Altimetry

被引:5
作者
Halimi, Abderrahim [1 ]
Buller, Gerald S. [1 ]
McLaughlin, Stephen [1 ]
Honeine, Paul [2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Rouen Normandie, Lab Informat Traitement Informat & Syst, F-76000 Rouen, France
基金
英国工程与自然科学研究理事会;
关键词
Altimetry; Bayesian algorithm; coordinate descent algorithm (CDA); gamma Markov random fields (gamma-MRFs); SEMIANALYTICAL MODEL; OPTIMIZATION; RETRACKING;
D O I
10.1109/JSTARS.2016.2629516
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel Bayesian strategy for the estimation of smooth signals corrupted by Gaussian noise. The method assumes a smooth evolution of a succession of continuous signals that can have a numerical or an analytical expression with respect to some parameters. The proposed Bayesian model takes into account the Gaussian properties of the noise and the smooth evolution of the successive signals. In addition, a gamma Markov random field prior is assigned to the signal energies and to the noise variances to account for their known properties. The resulting posterior distribution is maximized using a fast coordinate descent algorithm whose parameters are updated by analytical expressions. The proposed algorithm is tested on satellite altimetric data demonstrating good denoising results on both synthetic and real signals. In comparison with state-of-the-art algorithms, the proposed strategy provides a good compromise between denoising quality and necessary reduced computational cost. The proposed algorithm is also shown to improve the quality of the altimetric parameters when combined with a parameter estimation or a classification strategy.
引用
收藏
页码:1278 / 1289
页数:12
相关论文
共 50 条
  • [1] An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems
    Afonso, Manya V.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) : 681 - 695
  • [2] Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects
    Amarouche, L.
    Thibaut, P.
    Zanife, O. Z.
    Dumont, J. -P.
    Vincent, P.
    Steunou, N.
    [J]. MARINE GEODESY, 2004, 27 (1-2) : 171 - 197
  • [3] [Anonymous], 2011, HDB NONLINEAR FILTER
  • [4] [Anonymous], 1995, NONLINEAR PROGRAMMIN
  • [5] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [6] Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems
    Beck, Amir
    Teboulle, Marc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) : 2419 - 2434
  • [7] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445
  • [8] BROWN GS, 1977, IEEE T ANTENN PROPAG, V25, P67, DOI 10.1109/JOE.1977.1145328
  • [9] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095
  • [10] Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights
    Deledalle, Charles-Alban
    Denis, Loic
    Tupin, Florence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (12) : 2661 - 2672