The effect of temperature on ionic liquid modified Fe-N-C catalysts for alkaline oxygen reduction reaction

被引:16
|
作者
Wolker, Thomas [1 ]
Brunnengraeber, Kai [1 ]
Martinaiou, Ioanna [2 ,3 ,4 ]
Lorenz, Nick [1 ]
Zhang, Gui-Rong [1 ,5 ]
Kramm, Ulrike, I [2 ,3 ,4 ]
Etzold, Bastian J. M. [1 ]
机构
[1] Tech Univ Darmstadt, Ernst Berl Inst Tech & Makromolekulare Chem, Dept Chem, D-64287 Darmstadt, Germany
[2] Tech Univ Darmstadt, Catalysts & Electrocatalysts Grp, Dept Chem, D-64287 Darmstadt, Germany
[3] Tech Univ Darmstadt, Grad Sch Excellence Energy Sci & Engn, D-64287 Darmstadt, Germany
[4] Tech Univ Darmstadt, Dept Mat & Earth Sci, D-64287 Darmstadt, Germany
[5] Tiangong Univ, Sch Chem Engn & Technol, Tianjin 300387, Peoples R China
来源
基金
欧洲研究理事会;
关键词
Oxygen reduction reaction; Non-precious metal catalyst; Ionic liquid; Fe-N-C catalyst; Temperature effect; WATER-ADSORPTION; METAL-CATALYSTS; CARBON; PERFORMANCE; ELECTROCATALYSTS; COMPOSITE; SULFUR;
D O I
10.1016/j.jechem.2021.11.042
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70 degrees C. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition.CO 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [21] Enhancement of Performance of Fe-N-C Catalysts by Copper and Sulfur Doping for the Oxygen Reduction Reaction
    Wang, Yuemin
    Meng, Qinglei
    Wang, Xian
    Ge, Junjie
    Liu, Changpeng
    Xing, Wei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (08): : 1843 - 1849
  • [22] Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media
    Zuniga, Cesar
    Candia-Onfray, Christian
    Venegas, Ricardo
    Munoz, Karina
    Urra, Jonathan
    Sanchez-Arenillas, Maria
    Marco, Jose F.
    Zagal, Jose H.
    Recio, Francisco J.
    ELECTROCHEMISTRY COMMUNICATIONS, 2019, 102 : 78 - 82
  • [23] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Kang Liu
    Junwei Fu
    Yiyang Lin
    Tao Luo
    Ganghai Ni
    Hongmei Li
    Zhang Lin
    Min Liu
    Nature Communications, 13
  • [24] What Is the Rate-Limiting Step of Oxygen Reduction Reaction on Fe-N-C Catalysts?
    Yu, Saerom
    Levell, Zachary
    Jiang, Zhou
    Zhao, Xunhua
    Liu, Yuanyue
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (46) : 25352 - 25356
  • [25] Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction
    Jiang, Run
    Qiao, Zelong
    Xu, Haoxiang
    Cao, Dapeng
    CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 224 - 234
  • [26] Impact of ionomers on porous Fe-N-C catalysts for alkaline oxygen reduction in gas diffusion electrodes
    Zhu, Jinjie
    Pedersen, Angus
    Kellner, Simon
    Hunter, Robert D.
    Barrio, Jesus
    COMMUNICATIONS CHEMISTRY, 2025, 8 (01):
  • [27] Oxygen Reduction Reaction in Alkaline Media Causes Iron Leaching from Fe-N-C Electrocatalysts
    Ku, Yu-Ping
    Ehelebe, Konrad
    Hutzler, Andreas
    Bierling, Markus
    Boehm, Thomas
    Zitolo, Andrea
    Vorokhta, Mykhailo
    Bibent, Nicolas
    Speck, Florian D.
    Seeberger, Dominik
    Khalakhan, Ivan
    Mayrhofer, Karl J. J.
    Thiele, Simon
    Jaouen, Frederic
    Cherevko, Serhiy
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (22) : 9753 - 9763
  • [28] High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media
    Tian, Hao
    Song, Ailing
    Zhang, Peng
    Sun, Kaian
    Wang, Jingjing
    Sun, Bing
    Fan, Qiaohui
    Shao, Guangjie
    Chen, Chen
    Liu, Hao
    Li, Yadong
    Wang, Guoxiu
    ADVANCED MATERIALS, 2023, 35 (14)
  • [29] Effect of the N content of Fe/N/graphene catalysts for the oxygen reduction reaction in alkaline media
    Dominguez, Carlota
    Perez-Alonso, F. J.
    Salam, Mohamed Abdel
    Al-Thabaiti, Shaeel A.
    Pena, Miguel A.
    Barrio, L.
    Rojas, S.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (48) : 24487 - 24494
  • [30] Sulfur-Doped Fe-N-C Nanomaterials as Catalysts for the Oxygen Reduction Reaction in Acidic Medium
    Maouche, Chanez
    Yang, Juan
    Al-Hilfi, Samir H.
    Tao, Xiafang
    Zhou, Yazhou
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 4397 - 4405