Multiple Early Introductions of SARS-CoV-2 to Cape Town, South Africa

被引:17
|
作者
Engelbrecht, Susan [1 ,2 ]
Delaney, Kayla [1 ]
Kleinhans, Bronwyn [1 ]
Wilkinson, Eduan [3 ]
Tegally, Houriiyah [3 ]
Stander, Tania [2 ]
van Zyl, Gert [1 ,2 ]
Preiser, Wolfgang [1 ,2 ]
de Oliveira, Tulio [3 ,4 ,5 ]
机构
[1] Stellenbosch Univ, Fac Med & Hlth Sci, Div Med Virol, ZA-8000 Cape Town, South Africa
[2] Natl Hlth Lab Serv NHLS, Tygerberg Business Unit, ZA-8000 Cape Town, South Africa
[3] Univ KwaZulu Natal, Sch Lab Med & Med Sci, KwaZulu Natal Res Innovat & Sequencing Platform K, ZA-4000 Durban, South Africa
[4] Ctr Aids Programme Res South Africa CAPRISA, ZA-4000 Durban, South Africa
[5] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA
来源
VIRUSES-BASEL | 2021年 / 13卷 / 03期
基金
英国医学研究理事会;
关键词
betacoronavirus; SARS-CoV-2; COVID-19; genome sequencing; mutation; phylogenetics; Cape Town; Western Cape Province; South Africa; molecular epidemiology; EMERGENCE; IDENTIFICATION; CORONAVIRUS; GENOMICS; VIRUS;
D O I
10.3390/v13030526
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Cape Town was the first city in South Africa to experience the full impact of the coronavirus disease 2019 (COVID-19) pandemic. We acquired samples from all suspected cases and their contacts during the first month of the pandemic from Tygerberg Hospital. Nanopore sequencing generated SARS-CoV-2 whole genomes. Phylogenetic inference with maximum likelihood and Bayesian methods were used to determine lineages that seeded the local epidemic. Three patients were known to have travelled internationally and an outbreak was detected in a nearby supermarket. Sequencing of 50 samples produced 46 high-quality genomes. The sequences were classified as lineages: B, B.1, B.1.1.1, B.1.1.161, B.1.1.29, B.1.8, B.39, and B.40. All the sequences from persons under investigation (PUIs) in the supermarket outbreak (lineage B.1.8) fall within a clade from the Netherlands with good support (p > 0.9). In addition, a new mutation, 5209A>G, emerged within the Cape Town cluster. The molecular clock analysis suggests that this occurred around 13 March 2020 (95% confidence interval: 9-17 March). The phylogenetic reconstruction suggests at least nine early introductions of SARS-CoV-2 into Cape Town and an early localized transmission in a shopping environment. Genomic surveillance was successfully used to investigate and track the spread of early introductions of SARS-CoV-2 in Cape Town.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A simple model to estimate the transmissibility of the Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa
    Yu, Yangyang
    Liul, Yuan
    Zhao, Shi
    Hel, Daihai
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (10) : 10361 - 10373
  • [42] The importance of utilizing travel history metadata for informative phylogeographical inferences: a case study of early SARS-CoV-2 introductions into Australia
    Porter, Ashleigh F.
    Featherstone, Leo
    Lane, Courtney R.
    Sherry, Norelle L.
    Nolan, Monica L.
    Lister, David
    Seemann, Torsten
    Duchene, Sebastian
    Howden, Benjamin P.
    MICROBIAL GENOMICS, 2023, 9 (08):
  • [43] Tracking and controlling the spatiotemporal spread of SARS-CoV-2 Omicron variant in South Africa
    Tong, Chengzhuo
    Shi, Wenzhong
    Zhang, Anshu
    Shi, Zhicheng
    TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2022, 46
  • [44] Dissemination and evolution of SARS-CoV-2 in the early pandemic phase in South America
    Wolf, Jonas Michel
    Streck, Andre Felipe
    Fonseca, Andre
    Ikuta, Nilo
    Simon, Daniel
    Lunge, Vagner Ricardo
    JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (07) : 4496 - 4507
  • [45] Microplastics in Mussels Along the Coast of Cape Town, South Africa
    Sparks, Conrad
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2020, 104 (04) : 423 - 431
  • [46] Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador
    Gutierrez, Bernardo
    Marquez, Sully
    Prado-Vivar, Belen
    Becerra-Wong, Monica
    Jose Guadalupe, Juan
    da Silva Candido, Darlan
    Carlos Fernandez-Cadena, Juan
    Morey-Leon, Gabriel
    Armas-Gonzalez, Ruben
    Madeleiny Andrade-Molina, Derly
    Bruno, Alfredo
    de Mora, Domenica
    Olmedo, Maritza
    Portugal, Denisse
    Gonzalez, Manuel
    Orlando, Alberto
    Felix Drexler, Jan
    Moreira-Soto, Andres
    Sander, Anna-Lena
    Brunink, Sebastian
    Kuhne, Arne
    Patino, Leandro
    Carrazco-Montalvo, Andres
    Mestanza, Orson
    Zurita, Jeannete
    Sevillano, Gabriela
    du Plessis, Louis
    McCrone, John T.
    Coloma, Josefina
    Trueba, Gabriel
    Barragan, Veronica
    Rojas-Silva, Patricio
    Grunauer, Michelle
    Kraemer, Moritz U. G.
    Faria, Nuno R.
    Escalera-Zamudio, Marina
    Pybus, Oliver G.
    Cardenas, Paul
    VIRUS EVOLUTION, 2021, 7 (02)
  • [47] Insights on the possibility of SARS-CoV-2 transmission through the eyes
    Zhu, Rui
    Yu, Zi-Yan
    Han, Lin
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2022, 15 (11) : 1857 - 1863
  • [48] Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started?
    Bellucci, Gianmarco
    Rinaldi, Virginia
    Buscarinu, Maria Chiara
    Renie, Roberta
    Bigi, Rachele
    Pellicciari, Giulia
    Morena, Emanuele
    Romano, Carmela
    Marrone, Antonio
    Mechelli, Rosella
    Salvetti, Marco
    Ristori, Giovanni
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [49] Understanding the epidemiology, pathophysiology, diagnosis and management of SARS-CoV-2
    Fadaka, Adewale Oluwaseun
    Sibuyi, Nicole Remaliah Samantha
    Adewale, Olusola Bolaji
    Bakare, Olalekan Olanrewaju
    Akanbi, Musa Oyebowale
    Klein, Ashwil
    Madiehe, Abram Madimabe
    Meyer, Mervin
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2020, 48 (08)
  • [50] Identifying SARS-CoV-2 regional introductions and transmission clusters in real time
    McBroome, Jakob
    Martin, Jennifer
    de Bernardi Schneider, Adriano
    Turakhia, Yatish
    Corbett-Detig, Russell
    VIRUS EVOLUTION, 2022, 8 (01)