UNSUPERVISED ANOMALY DETECTION IN DIGITAL PATHOLOGY USING GANS

被引:8
作者
Poceviciute, Milda [1 ,2 ]
Eilertsen, Gabriel [1 ,2 ]
Lundstrom, Claes [1 ,2 ,3 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, Linkoping, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
[3] Sectra AB, Linkoping, Sweden
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
关键词
digital pathology; anomaly detection; GAN; unsupervised learning;
D O I
10.1109/ISBI48211.2021.9434141
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Machine learning (ML) algorithms are optimized for the distribution represented by the training data. For outlier data, they often deliver predictions with equal confidence, even though these should not be trusted. In order to deploy ML-based digital pathology solutions in clinical practice, effective methods for detecting anomalous data are crucial to avoid incorrect decisions in the outlier scenario. We propose a new unsupervised learning approach for anomaly detection in histopathology data based on generative adversarial networks (GANs). Compared to the existing GAN-based methods that have been used in medical imaging, the proposed approach improves significantly on performance for pathology data. Our results indicate that histopathology imagery is substantially more complex than the data targeted by the previous methods. This complexity requires not only a more advanced GAN architecture but also an appropriate anomaly metric to capture the quality of the reconstructed images.
引用
收藏
页码:1878 / 1882
页数:5
相关论文
共 13 条
  • [1] Berg Amanda, 2020, 24 EUR C ART INT ECA
  • [2] Bulten Wouter, 2020, ARTIF INTELL
  • [3] Anomalous Example Detection in Deep Learning: A Survey
    Bulusu, Saikiran
    Kailkhura, Bhavya
    Li, Bo
    Varshney, Pramod K.
    Song, Dawn
    [J]. IEEE ACCESS, 2020, 8 : 132330 - 132347
  • [5] Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
  • [6] Gulrajani I., 2017, P ADV NEUR INF PROC, P5767
  • [7] Karras Tero, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P8107, DOI 10.1109/CVPR42600.2020.00813
  • [8] Karras T., 2018, INT C LEARN REPR
  • [9] 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
    Litjens, Geert
    Bandi, Peter
    Bejnordi, Babak Ehteshami
    Geessink, Oscar
    Balkenhol, Maschenka
    Bult, Peter
    Halilovic, Altuna
    Hermsen, Meyke
    van de Loo, Rob
    Vogels, Rob
    Manson, Quirine F.
    Stathonikos, Nikolas
    Baidoshvili, Alexi
    van Diest, Paul
    Wauters, Carla
    van Dijk, Marcory
    van der Laak, Jeroen
    [J]. GIGASCIENCE, 2018, 7 (06):
  • [10] Mukherjee Sudipto, 2018, ABS18090327 CORR