Chebyshev type inequalities via generalized fractional conformable integrals

被引:35
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Rahman, Gauhar [2 ]
Mehrez, Khaled [3 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
[2] Shaheed Benazir Bhutto Univ, Dept Math, Sheringal, Pakistan
[3] Univ Kairouan, Dept Math, Issat Kasserine, Kairouan, Tunisia
关键词
Fractional integral; Generalized fractional conformable integral; Inequalities; HADAMARD TYPE INEQUALITIES; GRUSS TYPE;
D O I
10.1186/s13660-019-2197-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378-389, 2019). Also, we present Chebyshev type inequalities involving Riemann-Liouville type fractional conformable integral operators as a particular result of our main result.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals
    Iscan, Imdat
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 287 - 298
  • [42] New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals
    Butt, Saad Ihsan
    Umar, Muhammad
    Rashid, Saima
    Akdemir, Ahmet Ocak
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [43] Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals
    Hezenci, Fatih
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [44] Hermite-Hadamard-type inequalities for functions whose derivatives are -convex via fractional integrals
    Kwun, Young Chel
    Saleem, Muhammad Shoaib
    Ghafoor, Mamoona
    Nazeer, Waqas
    Kang, Shin Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [45] Hardy type inequalities for fractional integrals and derivatives of Riemann–Liouville
    Nasibullin R.
    Lobachevskii Journal of Mathematics, 2017, 38 (4) : 709 - 718
  • [46] Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type
    Bernardis, Ana
    Hartzstein, Silvia
    Pradolini, Gladis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 825 - 846
  • [47] On generalized fractional integrals
    Nakai, E
    TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (03): : 587 - 602
  • [48] Certain inequalities via generalized proportional Hadamard fractional integral operators
    Rahman, Gauhar
    Abdeljawad, Thabet
    Jarad, Fahd
    Khan, Aftab
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [49] Some Inequalities of Cebysev Type for Conformable k-Fractional Integral Operators
    Qi, Feng
    Rahman, Gauhar
    Hussain, Sardar Muhammad
    Du, Wei-Shih
    Nisar, Kottakkaran Sooppy
    SYMMETRY-BASEL, 2018, 10 (11):
  • [50] Certain Grüss-type inequalities via tempered fractional integrals concerning another function
    Gauhar Rahman
    Kottakkaran Sooppy Nisar
    Saima Rashid
    Thabet Abdeljawad
    Journal of Inequalities and Applications, 2020