Chebyshev type inequalities via generalized fractional conformable integrals

被引:35
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Rahman, Gauhar [2 ]
Mehrez, Khaled [3 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
[2] Shaheed Benazir Bhutto Univ, Dept Math, Sheringal, Pakistan
[3] Univ Kairouan, Dept Math, Issat Kasserine, Kairouan, Tunisia
关键词
Fractional integral; Generalized fractional conformable integral; Inequalities; HADAMARD TYPE INEQUALITIES; GRUSS TYPE;
D O I
10.1186/s13660-019-2197-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378-389, 2019). Also, we present Chebyshev type inequalities involving Riemann-Liouville type fractional conformable integral operators as a particular result of our main result.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] On the weighted fractional integral inequalities for Chebyshev functionals
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Khan, Sami Ullah
    Baleanu, Dumitru
    Vijayakumar, V.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [32] On the weighted fractional integral inequalities for Chebyshev functionals
    Gauhar Rahman
    Kottakkaran Sooppy Nisar
    Sami Ullah Khan
    Dumitru Baleanu
    V. Vijayakumar
    Advances in Difference Equations, 2021
  • [33] Generalized fractional integrals on generalized Morrey spaces
    Nakai, Eiichi
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 339 - 351
  • [34] On multiplicative conformable fractional integrals: theory and applications
    Budak, Huseyin
    Ergun, Busra Betul
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [35] Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Shahid Mubeen
    Sana Iqbal
    Journal of Inequalities and Applications, 2016
  • [36] On Grüss inequalities within generalized K-fractional integrals
    Saima Rashid
    Fahd Jarad
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Dumitru Baleanu
    Jia-Bao Liu
    Advances in Difference Equations, 2020
  • [37] On generalized fractional integral inequalities of Ostrowski type
    Yildirim, Huseyin
    Yildirim, Seda Kilic
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2021, 25 (01): : 143 - 151
  • [38] Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals
    Young Chel Kwun
    Muhammad Shoaib Saleem
    Mamoona Ghafoor
    Waqas Nazeer
    Shin Min Kang
    Journal of Inequalities and Applications, 2019
  • [39] Certain Gruss-type inequalities via tempered fractional integrals concerning another function
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Rashid, Saima
    Abdeljawad, Thabet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [40] Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals
    Ali, Muhammad Aamir
    Goodrich, Christopher S. S.
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)