Chebyshev type inequalities via generalized fractional conformable integrals

被引:35
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Rahman, Gauhar [2 ]
Mehrez, Khaled [3 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
[2] Shaheed Benazir Bhutto Univ, Dept Math, Sheringal, Pakistan
[3] Univ Kairouan, Dept Math, Issat Kasserine, Kairouan, Tunisia
关键词
Fractional integral; Generalized fractional conformable integral; Inequalities; HADAMARD TYPE INEQUALITIES; GRUSS TYPE;
D O I
10.1186/s13660-019-2197-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378-389, 2019). Also, we present Chebyshev type inequalities involving Riemann-Liouville type fractional conformable integral operators as a particular result of our main result.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Chebyshev type inequalities via generalized fractional conformable integrals
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Khaled Mehrez
    Journal of Inequalities and Applications, 2019
  • [2] Ostrowski type inequalities via new fractional conformable integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Gozpinar, Abdurrahman
    Jarad, Fahd
    AIMS MATHEMATICS, 2019, 4 (06): : 1684 - 1697
  • [3] Generalized k-fractional conformable integrals and related inequalities
    Qi, Feng
    Habib, Siddra
    Mubeen, Shahid
    Naeem, Muhammad Nawaz
    AIMS MATHEMATICS, 2019, 4 (03): : 343 - 358
  • [4] Novel results on trapezoid-type inequalities for conformable fractional integrals
    Hezenci, Fatih
    Budak, Huseyin
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (02) : 425 - 438
  • [5] Ostrowski type inequalities involving conformable integrals via preinvex functions
    Khurshid, Yousaf
    Adil Khan, Muhammad
    Chu, Yu-Ming
    AIP ADVANCES, 2020, 10 (05)
  • [6] New Simpson type inequalities for twice differentiable functions via generalized fractional integrals
    You, Xuexiao
    Hezenci, Fatih
    Budak, Huseyin
    Kara, Hasan
    AIMS MATHEMATICS, 2022, 7 (03): : 3959 - 3971
  • [7] Gruss-Type Inequalities by Means of Generalized Fractional Integrals
    Sousa, J. Vanterler da C.
    Oliveira, D. S.
    de Oliveira, E. Capelas
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (04): : 1029 - 1047
  • [8] Some new inequalities for generalized fractional conformable integral operators
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Khan, Aftab
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [9] Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals
    Praveen Agarwal
    Mohamed Jleli
    Muharrem Tomar
    Journal of Inequalities and Applications, 2017
  • [10] New version of midpoint-type inequalities for co-ordinated convex functions via generalized conformable integrals
    Kiris, Mehmet Eyup
    Vivas-Cortez, Miguel
    Uzun, Tugba Yalcin
    Bayrak, Gozde
    Budak, Huseyin
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):