A convex penalty for switching control of partial differential equations

被引:20
作者
Clason, Christian [1 ]
Rund, Armin [2 ]
Kunisch, Karl [2 ]
Barnard, Richard C. [3 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[3] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat & Appl Math Grp, POB 2008, Oak Ridge, TN 37831 USA
基金
奥地利科学基金会;
关键词
Optimal control; Switching control; Partial differential equations; Nonsmooth optimization; Convex analysis; Semi-smooth Newton method; STABILITY; SYSTEMS;
D O I
10.1016/j.sysconle.2015.12.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau-Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. The efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 23 条
  • [1] [Anonymous], 1999, CLASSICS APPL MATH, DOI DOI 10.1137/1.9781611971088
  • [2] [Anonymous], 2008, ADV DESIGN CONTROL
  • [3] [Anonymous], 2015, THESIS TU MUNCHEN
  • [4] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [5] Boyd S, 2004, CONVEX OPTIMIZATION
  • [6] PARABOLIC CONTROL PROBLEMS IN MEASURE SPACES WITH SPARSE SOLUTIONS
    Casas, Eduardo
    Clason, Christian
    Kunisch, Karl
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) : 28 - 63
  • [7] Clason C., 2015, ESAIM CONTR IN PRESS
  • [8] OPTIMAL SWITCHING FOR ORDINARY DIFFERENTIAL-EQUATIONS
    DOLCETTA, IC
    EVANS, LC
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (01) : 143 - 161
  • [9] Optimal switching boundary control of a string to rest in finite time
    Gugat, Martin
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (04): : 283 - 305
  • [10] Relaxation methods for mixed-integer optimal control of partial differential equations
    Hante, Falk M.
    Sager, Sebastian
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 197 - 225