Supersymmetric quantum mechanics in first order Dirac equation

被引:0
作者
Joshi, SC [1 ]
Rajput, BS [1 ]
机构
[1] Kumaun Univ, Dept Phys, Naini Tal 263002, India
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have investigated supersymmetric quantum equation of massless spin-1/2 particle in uniform magnetic field with the chiral representation of Dirac matrices and it has been shown that supersymmetric Dirac equation is invariant in spatial coordinates. Superalgebra OSP (1/2) has been generated and the conditions of Spontaneous breaking of supersymmetry have been analysed.
引用
收藏
页码:437 / 439
页数:3
相关论文
共 50 条
[21]   Exact solutions of the Fokker-Planck equation from an nth order supersymmetric quantum mechanics approach [J].
Schulze-Halberg, Axel ;
Morales Rivas, Jesus ;
Pena Gil, Jose Juan ;
Garcia-Ravelo, Jesus ;
Roy, Pinaki .
PHYSICS LETTERS A, 2009, 373 (18-19) :1610-1615
[22]   Supersymmetric completion of supersymmetric quantum mechanics [J].
Hyun, S ;
Kiem, Y ;
Shin, H .
NUCLEAR PHYSICS B, 1999, 558 (1-2) :349-370
[23]   The confluent algorithm in second-order supersymmetric quantum mechanics [J].
Fernández, DJ ;
Salinas-Hernández, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (10) :2537-2543
[24]   Supersymmetric Quantum Mechanics [J].
Fernandez C, David J. .
ADVANCED SUMMER SCHOOL IN PHYSICS 2009: FRONTIERS IN CONTEMPORARY PHYSICS, 5TH EDITION, 2010, 1287 :3-+
[26]   Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics [J].
Daoud, M ;
Kibler, M .
PHYSICS LETTERS A, 2004, 321 (03) :147-151
[27]   Hamiltonian reduction and supersymmetric mechanics with Dirac monopole [J].
Bellucci, Stefano ;
Nersessian, Armen ;
Yeranyan, Armen .
PHYSICAL REVIEW D, 2006, 74 (06)
[28]   SUSY QM in first-order Dirac equation [J].
Bora, S ;
Rajput, BS .
EUROPHYSICS LETTERS, 2000, 50 (06) :731-734
[29]   Complex Solutions to the Painleve IV Equation through Supersymmetric Quantum Mechanics [J].
Bermudez, David ;
Fernandez C, David J. .
ADVANCED SUMMER SCHOOL IN PHYSICS 2011 (EAV 2011), 2012, 1420 :47-51