On global-in-time weak solutions to the magnetohydrodynamic system of compressible inviscid fluids

被引:15
|
作者
Feireisl, Eduard [1 ,2 ]
Li, Yang [3 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] TU Berlin, Str 17 Juni, Berlin, Germany
[3] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
关键词
magnetohydrodynamic system; compressible flow; weak solutions; convex integration; CLASSICAL-SOLUTIONS; MHD EQUATIONS; NONUNIQUENESS; DISSIPATION; EXISTENCE; FLOW;
D O I
10.1088/1361-6544/ab4c8e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the motion of an inviscid compressible fluid under the mutual interactions with magnetic field. We show that the initial value problem is ill-posed in the class of weak solutions for a large class of physically admissible data. We also consider the same problem for inviscid heat-conductive fluid and show the same result under certain restrictions imposed on the magnetic field. The main tool is the method of convex integration adapted from the Euler system with ?variable coefficients?.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 50 条
  • [21] GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE NAVIER-STOKES EQUATIONS FOR QUANTUM FLUIDS
    Juengel, Ansgar
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) : 1025 - 1045
  • [22] WEAK SOLUTIONS TO EQUATIONS OF STEADY COMPRESSIBLE HEAT CONDUCTING FLUIDS
    Mucha, Piotr B.
    Pokorny, Milan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (05): : 785 - 813
  • [23] GLOBAL WEAK SOLUTIONS FOR THE COMPRESSIBLE ACTIVE LIQUID CRYSTAL SYSTEM
    Chen, Gui-Qiang G.
    Majumdar, Apala
    Wang, Dehua
    Zhang, Rongfang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 3632 - 3675
  • [24] Global weak solutions for variable density asymmetric incompressible fluids
    Braz e Silva, P.
    Santos, E. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 953 - 969
  • [25] GLOBAL STRONG SOLUTIONS TO THE PLANAR COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH LARGE INITIAL DATA AND VACUUM
    Fan, Jishan
    Huang, Shuxiang
    Li, Fucai
    KINETIC AND RELATED MODELS, 2017, 10 (04) : 1035 - 1053
  • [26] GLOBAL WEAK SOLUTIONS FOR QUANTUM ISOTHERMAL FLUIDS
    Carles, Remi
    Carrapatoso, Kleber
    Hillairet, Matthieu
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (06) : 2241 - 2298
  • [27] Global weak solutions to the three-dimensional inviscid Boussinesq system in the presence of magnetic field
    Yang Li
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [28] Global well-posedness for the compressible magnetohydrodynamic system in the critical Lp framework
    Shi, Weixuan
    Xu, Jiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3662 - 3686
  • [29] Global Weak Solutions to the Magnetohydrodynamic and Vlasov Equations
    Robin Ming Chen
    Jilong Hu
    Dehua Wang
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 343 - 360
  • [30] Onsager's Energy Conservation of Weak Solutions for a Compressible and Inviscid Fluid
    Wu, Xinglong
    Zhou, Qian
    FRACTAL AND FRACTIONAL, 2023, 7 (04)