Deep Learning of Ultrasound Imaging for Evaluating Ambulatory Function of Individuals with Duchenne Muscular Dystrophy

被引:10
作者
Liao, Ai-Ho [1 ,2 ]
Chen, Jheng-Ru [3 ]
Liu, Shi-Hong [1 ]
Lu, Chun-Hao [3 ]
Lin, Chia-Wei [4 ]
Shieh, Jeng-Yi [5 ]
Weng, Wen-Chin [6 ,7 ,8 ]
Tsui, Po-Hsiang [3 ,9 ,10 ,11 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei 106335, Taiwan
[2] Natl Def Med Ctr, Dept Biomed Engn, Taipei 114201, Taiwan
[3] Chang Gung Univ, Coll Med, Dept Med Imaging & Radiol Sci, Taoyuan 333323, Taiwan
[4] Natl Taiwan Univ Hosp Hsin Chu Branch, Dept Phys Med & Rehabil, Hsinchu 300195, Taiwan
[5] Natl Taiwan Univ Hosp, Dept Phys Med & Rehabil, Taipei 100225, Taiwan
[6] Natl Taiwan Univ Hosp, Dept Pediat, Taipei 100225, Taiwan
[7] Natl Taiwan Univ, Childrens Hosp, Dept Pediat Neurol, Taipei 100226, Taiwan
[8] Natl Taiwan Univ, Coll Med, Dept Pediat, Taipei 100233, Taiwan
[9] Chang Gung Univ, Inst Radiol Res, Taoyuan 333323, Taiwan
[10] Chang Gung Mem Hosp, Taoyuan 333323, Taiwan
[11] Chang Gung Mem Hosp, Dept Pediat, Div Pediat Gastroenterol, Taoyuan 333423, Taiwan
关键词
Duchenne muscular dystrophy; deep learning; ultrasound imaging; QUANTITATIVE MUSCLE ULTRASOUND; MANAGEMENT; DISEASE;
D O I
10.3390/diagnostics11060963
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Duchenne muscular dystrophy (DMD) results in loss of ambulation and premature death. Ultrasound provides real-time, safe, and cost-effective routine examinations. Deep learning allows the automatic generation of useful features for classification. This study utilized deep learning of ultrasound imaging for classifying patients with DMD based on their ambulatory function. A total of 85 individuals (including ambulatory and nonambulatory subjects) underwent ultrasound examinations of the gastrocnemius for deep learning of image data using LeNet, AlexNet, VGG-16, VGG-16(TL), VGG-19, and VGG-19(TL) models (the notation TL indicates fine-tuning pretrained models). Gradient-weighted class activation mapping (Grad-CAM) was used to visualize features recognized by the models. The classification performance was evaluated using the confusion matrix and receiver operating characteristic (ROC) curve analysis. The results show that each deep learning model endows muscle ultrasound imaging with the ability to enable DMD evaluations. The Grad-CAMs indicated that boundary visibility, muscular texture clarity, and posterior shadowing are relevant sonographic features recognized by the models for evaluating ambulatory function. Of the proposed models, VGG-19 provided satisfying classification performance (the area under the ROC curve: 0.98; accuracy: 94.18%) and feature recognition in terms of physical characteristics. Deep learning of muscle ultrasound is a potential strategy for DMD characterization.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] MANAGEMENT OF END STAGE RESPIRATORY-FAILURE IN DUCHENNE MUSCULAR-DYSTROPHY
    BACH, JR
    OBRIEN, J
    KROTENBERG, R
    ALBA, AS
    [J]. MUSCLE & NERVE, 1987, 10 (02) : 177 - 182
  • [2] Predictive factors of cessation of ambulation in patients with Duchenne muscular dystrophy
    Bakker, JPJ
    de Groot, IJM
    Beelen, A
    Lankhorst, GJ
    [J]. AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2002, 81 (12) : 906 - 912
  • [3] Birnkrant DJ, 2018, LANCET NEUROL, V17, P251, DOI 10.1016/S1474-4422(18)30024-3
  • [4] Comparing different deep learning architectures for classification of chest radiographs
    Bressem, Keno K.
    Adams, Lisa C.
    Erxleben, Christoph
    Hamm, Bernd
    Niehues, Stefan M.
    Vahldiek, Janis L.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Sensitivity and specificity of qualitative muscle ultrasound in assessment of suspected neuromuscular disease in childhood
    Brockmann, Knut
    Becker, Peter
    Schreiber, Gudrun
    Neubert, Karin
    Brunner, Edgar
    Boennemann, Carsten
    [J]. NEUROMUSCULAR DISORDERS, 2007, 17 (07) : 517 - 523
  • [6] Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods
    Burlina, Philippe
    Billings, Seth
    Joshi, Neil
    Albayda, Jemima
    [J]. PLOS ONE, 2017, 12 (08):
  • [7] Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care
    Bushby, Katharine
    Finkel, Richard
    Birnkrant, David J.
    Case, Laura E.
    Clemens, Paula R.
    Cripe, Linda
    Kaul, Ajay
    Kinnett, Kathi
    McDonald, Craig
    Pandya, Shree
    Poysky, James
    Shapiro, Frederic
    Tomezsko, Jean
    Constantin, Carolyn
    [J]. LANCET NEUROLOGY, 2010, 9 (02) : 177 - 189
  • [8] Can we open the black box of AI?
    Castelvecchi D.
    [J]. Nature, 2016, 538 (7623) : 20 - 23
  • [9] Clinical Value of Information Entropy Compared with Deep Learning for Ultrasound Grading of Hepatic Steatosis
    Chen, Jheng-Ru
    Chao, Yi-Ping
    Tsai, Yu-Wei
    Chan, Hsien-Jung
    Wan, Yung-Liang
    Tai, Dar-In
    Tsui, Po-Hsiang
    [J]. ENTROPY, 2020, 22 (09)
  • [10] The muscular dystrophies
    Emery, AEH
    [J]. LANCET, 2002, 359 (9307) : 687 - 695