On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network

被引:38
作者
Mischler, S. [1 ,2 ]
Quininao, C. [3 ,4 ]
Touboul, J. [4 ,5 ]
机构
[1] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[2] CNRS, IUFCEREMADE, UMR 7534, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, 4 Pl Jussieu, F-75005 Paris, France
[4] CIRB Coll France, Math Neurosci Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[5] CIRB Coll France, INRIA Paris Rocquencourt, Mycenae Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
关键词
MATHEMATICAL-THEORY; DYNAMICS; OSCILLATIONS; INTEGRATE; EQUATION; SYSTEM;
D O I
10.1007/s00220-015-2556-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate existence and uniqueness of solutions of a McKean-Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.
引用
收藏
页码:1001 / 1042
页数:42
相关论文
共 39 条
[11]  
BREZIS H, 1983, COLLECTION MATH APPL
[12]   Fast global oscillations in networks of integrate-and-fire neurons with low firing rates [J].
Brunel, N ;
Hakim, V .
NEURAL COMPUTATION, 1999, 11 (07) :1621-1671
[13]   Field-theoretic approach to fluctuation effects in neural networks [J].
Buice, Michael A. ;
Cowan, Jack D. .
PHYSICAL REVIEW E, 2007, 75 (05)
[14]   Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states [J].
Caceres, Maria J. ;
Carrillo, Jose A. ;
Perthame, Benoit .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2011, 1
[15]   An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex [J].
Cai, D ;
Tao, L ;
Shelley, M ;
McLaughlin, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (20) :7757-7762
[16]   A Master Equation Formalism for Macroscopic Modeling of Asynchronous Irregular Activity States [J].
El Boustani, Sami ;
Destexhe, Alain .
NEURAL COMPUTATION, 2009, 21 (01) :46-100
[17]   MATHEMATICAL-THEORY OF VISUAL HALLUCINATION PATTERNS [J].
ERMENTROUT, GB ;
COWAN, JD .
BIOLOGICAL CYBERNETICS, 1979, 34 (03) :137-150
[18]   On self-similarity and stationary problem for fragmentation and coagulation models [J].
Escobedo, M ;
Mischler, S ;
Ricard, MR .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :99-125
[19]  
Ethier S. N., 2005, WILEY SERIES PROBABI
[20]  
FITZHUGH R., 1955, Bull. Math. Biophys, V17, P257, DOI [DOI 10.1007/BF02477753, 10.1007/BF02477753]