On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network

被引:36
作者
Mischler, S. [1 ,2 ]
Quininao, C. [3 ,4 ]
Touboul, J. [4 ,5 ]
机构
[1] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[2] CNRS, IUFCEREMADE, UMR 7534, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, 4 Pl Jussieu, F-75005 Paris, France
[4] CIRB Coll France, Math Neurosci Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[5] CIRB Coll France, INRIA Paris Rocquencourt, Mycenae Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
关键词
MATHEMATICAL-THEORY; DYNAMICS; OSCILLATIONS; INTEGRATE; EQUATION; SYSTEM;
D O I
10.1007/s00220-015-2556-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate existence and uniqueness of solutions of a McKean-Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.
引用
收藏
页码:1001 / 1042
页数:42
相关论文
共 39 条
[1]   ASYNCHRONOUS STATES IN NETWORKS OF PULSE-COUPLED OSCILLATORS [J].
ABBOTT, LF ;
VANVREESWIJK, C .
PHYSICAL REVIEW E, 1993, 48 (02) :1483-1490
[2]   CHARACTERISTICS OF RANDOM NETS OF ANALOG NEURON-LIKE ELEMENTS [J].
AMARI, S .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (05) :643-&
[3]   DYNAMICS OF PATTERN FORMATION IN LATERAL-INHIBITION TYPE NEURAL FIELDS [J].
AMARI, SI .
BIOLOGICAL CYBERNETICS, 1977, 27 (02) :77-87
[4]   Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex [J].
Amit, DJ ;
Brunel, N .
CEREBRAL CORTEX, 1997, 7 (03) :237-252
[5]  
[Anonymous], ARXIV14127487
[6]  
[Anonymous], 2007, STOCHASTIC DIFFERENT
[7]  
[Anonymous], ARXIV10065523
[8]   Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons [J].
Baladron, Javier ;
Fasoli, Diego ;
Faugeras, Olivier ;
Touboul, Jonathan .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2012, 2
[9]   Spatiotemporal dynamics of continuum neural fields [J].
Bressloff, Paul C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (03)
[10]   STOCHASTIC NEURAL FIELD THEORY AND THE SYSTEM-SIZE EXPANSION [J].
Bressloff, Paul C. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (05) :1488-1521