Analysis and time-delay synchronisation of chaotic satellite systems

被引:8
作者
Khan, Ayub [1 ,2 ]
Kumar, Sanjay [1 ,2 ]
机构
[1] Dept Math, Fac Nat Sci, Jamia Millia Islamia, New Delhi, India
[2] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 91卷 / 04期
关键词
Lyapunov exponents; bifurcation diagram; Poincare section map and satellite systems; OBSERVER-BASED APPROACH;
D O I
10.1007/s12043-018-1610-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we analyse the chaotic satellite system using dissipativity, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan-Yorke dimension. We obtain the equilibrium points of chaotic satellite system and at each equilibrium point, we obtain the eigenvalue of Jacobian matrix of the satellite system to verify the unstable region. We calculate the Kaplan-Yorke dimension, which ensures the strange behaviour of the system. We observe closely the three-dimensional (3D) phase portraits of the satellite system at different parameter values. We plot the Lyapunov exponent graphs corresponding to every 3D phase portrait of satellite systems, to verify the chaoticity of satellite systems. We establish time-delay synchronisation for two identical satellite systems. The simulated and qualitative results are in an excellent agreement.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] Fuzzy H∞ Synchronization for Chaotic Systems with Time-Varying Delay
    Ahn, Choon Ki
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 151 - 160
  • [2] [Anonymous], 1997, Spacecraft dynamics and control: a practical engineering approach, DOI DOI 10.1017/CBO9780511815652
  • [3] Carroll TI., 1991, IEEE Trans. CAS, V38, P435, DOI [10.1109/31.75404, DOI 10.1109/31.75404]
  • [4] Djaouida S, 2014, INT J MECH AEROSP IN, V8
  • [5] A general method for modified function projective lag synchronization in chaotic systems
    Du, Hongyue
    Zeng, Qingshuang
    Lue, Ning
    [J]. PHYSICS LETTERS A, 2010, 374 (13-14) : 1493 - 1496
  • [6] Duan GR., 2013, LMI in Control Systems Analysis, Design and Applications
  • [7] Dupree K, 2008, AM CONTR C WEST SEAT
  • [8] MEASURING THE STRANGENESS OF STRANGE ATTRACTORS
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICA D, 1983, 9 (1-2): : 189 - 208
  • [9] Guan P., 2005, P 44 IEEE C DEC CONT
  • [10] Hamaidzadeh S M, 2014, INT J COMPUT APPL, V94, P29