On the fluctuations of the giant component

被引:18
作者
Barraez, D
Boucheron, S
De la Vega, WF
机构
[1] Cent Univ Venezuela, Fac Ciencias, Dept Matemat, Caracas, Venezuela
[2] Univ Paris 11, Rech Informat Lab, CNRS, UMR 8623, F-91405 Orsay, France
关键词
D O I
10.1017/S0963548300004302
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide an alternate proof of the central limit theorem for the fluctuations of the size of the giant component in sparse random graphs. In contrast with previous proofs, the argument investigates a depth-first search algorithm, through first-passage analysis using couplings and martingale limit theorems. The analysis of the first passage limiting distribution for sequences of Markov chains might be interesting in its own right. This proof naturally provides an upper bound for the rate of convergence.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 13 条
  • [1] THE LONGEST PATH IN A RANDOM GRAPH
    AJTAI, M
    KOMLOS, J
    SZEMEREDI, E
    [J]. COMBINATORICA, 1981, 1 (01) : 1 - 12
  • [2] Aldous D, 1997, ANN PROBAB, V25, P812
  • [3] ALON N, 1992, PROBABILISTIC METHOD
  • [4] [Anonymous], 1989, REAL ANAL PROBABILIT
  • [5] [Anonymous], RANDOM STRUCT ALGORI
  • [6] Bollobas B, 1985, RANDOM GRAPHS
  • [7] INDUCED TREES IN SPARSE RANDOM GRAPHS
    DELAVEGA, WF
    [J]. GRAPHS AND COMBINATORICS, 1986, 2 (03) : 227 - 231
  • [8] Durrett R., 1991, PROBABILITY THEORY E
  • [9] ERDOS P, 1960, B INT STATIST INST, V38, P343
  • [10] HALL P, 1980, MARTINGALE LIMIT THE