Parameter concentrations in quantum approximate optimization

被引:62
作者
Akshay, V [1 ]
Rabinovich, D. [1 ]
Campos, E. [1 ]
Biamonte, J. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, 3 Nobel St, Moscow 121205, Russia
关键词
DRIVEN;
D O I
10.1103/PhysRevA.104.L010401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum approximate optimization algorithm (QAOA) has become a cornerstone of contemporary quantum applications development. In QAOA, a quantum circuit is trained-by repeatedly adjusting circuit parameters-to solve a problem instance. Several recent findings have reported parameter concentration effects in QAOA and their presence has become one of folklore: while empirically observed, the concentrations have not been defined and analytical approaches remain scarce, focusing on limiting system sizes while neglecting parameter scaling as system size increases. We found that optimal QAOA circuit parameters concentrate as an inverse polynomial in the problem size, providing an optimistic result for improving circuit training Our results are analytically demonstrated for QAOA at p = 1, 2 (corresponding to 2 and 4 tunable parameters, respectively). The technique is also applicable for higher depths wherein the concentration effect is cross verified numerically. Parameter concentrations allow for training on a fraction w < n of qubits to assert that these parameters are nearly optimal on n qubits, thereby reducing training time.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Reachability Deficits in Quantum Approximate Optimization [J].
Akshay, V ;
Philathong, H. ;
Morales, M. E. S. ;
Biamonte, J. D. .
PHYSICAL REVIEW LETTERS, 2020, 124 (09)
[2]  
[Anonymous], 2019, ARXIV190507047
[3]  
Bartschi A., 2020, P IEEE INT C QUANT C
[4]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[5]   Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems [J].
Brady, Lucas T. ;
Baldwin, Christopher L. ;
Bapat, Aniruddha ;
Kharkov, Yaroslav ;
Gorshkov, Alexey, V .
PHYSICAL REVIEW LETTERS, 2021, 126 (07)
[6]  
Brandao F. G., 2018, PREPRINT
[7]   Obstacles to Variational Quantum Optimization from Symmetry Protection [J].
Bravyi, Sergey ;
Kliesch, Alexander ;
Koenig, Robert ;
Tang, Eugene .
PHYSICAL REVIEW LETTERS, 2020, 125 (26)
[8]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[9]   Understanding Quantum Control Processor Capabilities and Limitations through Circuit Characterization [J].
Butko, Anastasiia ;
Michelogiannakis, George ;
Williams, Samuel ;
Iancu, Costin ;
Donofrio, David ;
Shalf, John ;
Carter, Jonathan ;
Siddiqi, Irfan .
2020 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2020), 2020, :66-75
[10]   Abrupt transitions in variational quantum circuit training [J].
Campos, Ernesto ;
Nasrallah, Aly ;
Biamonte, Jacob .
PHYSICAL REVIEW A, 2021, 103 (03)