Global existence;
strong solutions;
kinetic Cucker-Smale model;
the two dimensional incompressible Navier-Stokes equations;
weighted energy estimate;
ASYMPTOTIC FLOCKING DYNAMICS;
PRESSURELESS EULER SYSTEM;
WELL-POSEDNESS;
WEAK SOLUTIONS;
REGULARITY;
PARTICLES;
D O I:
10.3934/krm.2022023
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we investigate existence of global-in-time strong solutions to the Cauchy problem of the kinetic Cucker-Smale model coupled with the incompressible Navier-Stokes equations in the two dimensional space. By introducing a weighted Sobolev space and using the maximal regularity estimate on the linear non-stationary Stokes equations, we present a complete analysis on existence of global-in-time strong solutions to the coupled model, without any smallness assumptions on initial data.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
Seoul Natl Univ, Res Inst Math, Seoul, South Korea
Korea Inst Adv Study, Seoul, South KoreaUniv Verona, Dept Comp Sci, Verona, Italy
Ha, S. -Y.
Kim, J.
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South KoreaUniv Verona, Dept Comp Sci, Verona, Italy
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
Seoul Natl Univ, Res Inst Math, Seoul, South Korea
Korea Inst Adv Study, Seoul, South KoreaUniv Verona, Dept Comp Sci, Verona, Italy
Ha, S. -Y.
Kim, J.
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South KoreaUniv Verona, Dept Comp Sci, Verona, Italy