Quantum chaos border for quantum computing

被引:154
|
作者
Georgeot, B [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevE.62.3504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a generic model of quantum computer, composed of many qubits coupled by short-range inter action. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become complex, and the operability of the computer is destroyed. Despite the fact that the spacing between multiqubit states drops exponentially with the number of qubits n, we show that the quantum chaos border decreases only linearly with n. This opens a broad parameter region where the efficient operation of a quantum computer remains possible.
引用
收藏
页码:3504 / 3507
页数:4
相关论文
共 50 条
  • [41] Quantum chaos in elementary quantum mechanics
    Dabaghian, Y
    Jensen, R
    EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (03) : 423 - 439
  • [42] Quantum chaos in small quantum networks
    Kim, Ilki
    Mahler, Günter
    Journal of Modern Optics, 2000, 47 (2-3 SPEC.) : 177 - 186
  • [43] Quantum graphs: a model for quantum chaos
    Kottos, T
    Schanz, H
    PHYSICA E, 2001, 9 (03): : 523 - 530
  • [44] Quantum chaos, decoherence and quantum computation
    Benenti, G.
    Casati, G.
    RIVISTA DEL NUOVO CIMENTO, 2007, 30 (10): : 449 - 484
  • [45] QUANTUM COMPUTING 'Hot' dots for quantum computing
    Savage, Neil
    CHEMICAL & ENGINEERING NEWS, 2020, 98 (16) : 7 - 7
  • [46] Renormalisation in quantum mechanics, quantum instantons and quantum chaos
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) : 5501 - 5512
  • [47] Quantum computing for quantum tunneling
    Abel, Steven
    Chancellor, Nicholas
    Spannowsky, Michael
    PHYSICAL REVIEW D, 2021, 103 (01)
  • [48] QUANTUM COMPUTING Quantum RAM
    Blencowe, Miles
    NATURE, 2010, 468 (7320) : 44 - 45
  • [49] Quantum information and quantum computing
    Hao, Yue
    Long, Gui-Lu
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 2 - 2
  • [50] Quantum mechanics for quantum computing
    Owczarek, Robert
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (03)