Quantum chaos border for quantum computing

被引:154
|
作者
Georgeot, B [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevE.62.3504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a generic model of quantum computer, composed of many qubits coupled by short-range inter action. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become complex, and the operability of the computer is destroyed. Despite the fact that the spacing between multiqubit states drops exponentially with the number of qubits n, we show that the quantum chaos border decreases only linearly with n. This opens a broad parameter region where the efficient operation of a quantum computer remains possible.
引用
收藏
页码:3504 / 3507
页数:4
相关论文
共 50 条
  • [21] QUANTUM CHAOS
    BLUMEL, R
    MEHL, JB
    JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (1-2) : 311 - 319
  • [22] Quantum chaos
    Casati, G
    CHAOS, 1996, 6 (03) : 391 - 398
  • [23] QUANTUM CHAOS
    GUTZWILLER, MC
    SCIENTIFIC AMERICAN, 1992, 266 (01) : 78 - 84
  • [24] Quantum chaos
    Noriaki Horiuchi
    Nature Photonics, 2013, 7 (2) : 85 - 85
  • [25] QUANTUM CHAOS
    JENSEN, RV
    NATURE, 1992, 355 (6358) : 311 - 318
  • [26] Quantum chaos
    Bohigas, O
    NUCLEAR PHYSICS A, 2005, 751 : 343C - 372C
  • [27] Quantum chaos
    Moltenbrey, K
    COMPUTER GRAPHICS WORLD, 2001, 24 (10) : 46 - 49
  • [28] From Quantum Disorder to Quantum Chaos
    I. V. Gornyi
    A. D. Mirlin
    Journal of Low Temperature Physics, 2002, 126 : 1339 - 1354
  • [29] From quantum disorder to quantum chaos
    Gornyi, IV
    Mirlin, AD
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 126 (3-4) : 1339 - 1354
  • [30] Quantum integrability and quantum chaos in the micromaser
    Bullough, RK
    Bogolyubov, NM
    Puri, RR
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 122 (02) : 151 - 169