Quantum chaos border for quantum computing

被引:154
|
作者
Georgeot, B [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevE.62.3504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a generic model of quantum computer, composed of many qubits coupled by short-range inter action. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become complex, and the operability of the computer is destroyed. Despite the fact that the spacing between multiqubit states drops exponentially with the number of qubits n, we show that the quantum chaos border decreases only linearly with n. This opens a broad parameter region where the efficient operation of a quantum computer remains possible.
引用
收藏
页码:3504 / 3507
页数:4
相关论文
共 50 条
  • [1] Slow phase relaxation as a route to quantum computing beyond the quantum chaos border
    Flores, J
    Kun, SY
    Seligman, TH
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [2] Quantum computing of quantum chaos and imperfection effects
    Song, PH
    Shepelyansky, DL
    PHYSICAL REVIEW LETTERS, 2001, 86 (10) : 2162 - 2165
  • [3] Exponential gain in quantum computing of quantum chaos and localization
    Georgeot, B
    Shepelyansky, DL
    PHYSICAL REVIEW LETTERS, 2001, 86 (13) : 2890 - 2893
  • [4] Chaotic bits (chabits) in quantum and chaos computing
    Ciubotariu, C
    Ciubotariu, CI
    Ciubotariu, C
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2005, 2005, 746 : 1323 - 1330
  • [5] Computing on the verge of chaos: classical and quantum reservoirs
    Felbacq, Didier
    Rousseau, Emmanuel
    Kling, Emmanuel
    ACTIVE PHOTONIC PLATFORMS, APP 2024, 2024, 13110
  • [6] Anomalously Slow Cross Symmetry Phase Relaxation, Thermalized Non-Equilibrated Matter and Quantum Computing Beyond the Quantum Chaos Border
    Bienert, M.
    Flores, J.
    Kun, S. Yu.
    Seligman, T. H.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [7] Delocalization border and onset of chaos in a model of quantum computation
    Berman, GP
    Borgonovi, F
    Izrailev, FM
    Tsifrinovich, VI
    PHYSICAL REVIEW E, 2001, 64 (05) : 14 - 056226
  • [8] Quantum non-Markovian behavior at the chaos border
    Garcia-Mata, Ignacio
    Pineda, Carlos
    Wisniacki, Diego A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (11)
  • [9] Quantum signatures of chaos or quantum chaos?
    Bunakov, V. E.
    PHYSICS OF ATOMIC NUCLEI, 2016, 79 (06) : 995 - 1009
  • [10] Quantum signatures of chaos or quantum chaos?
    V. E. Bunakov
    Physics of Atomic Nuclei, 2016, 79 : 995 - 1009