Electrical discharge machining (EDM) is the extensively used nonconventional material removal process for machining engineering ceramics provided they are electrically conductive. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics that can be machined effectively by EDM. This paper investigates the effects of the electrical resistivity and the EDM parameters on the EDM performance of ZnO/Al2O3 ceramic in terms of the machining efficiency and the quality. The experimental results showed that the electrical resistivity and the EDM parameters such as pulse on-time, pulse off-time, and peak current had the great influence on the machining efficiency and the quality during electrical discharge machining of ZnO/Al2O3 ceramic. Moreover, the electrical resistivity of the ZnO/Al2O3 ceramic, which could be effectively machined by EDM, increased with increasing the pulse on-time and peak current and with decreasing the pulse off-time, respectively. Furthermore, the ZnO/Al2O3 ceramic with the electrical resistivity up to 3,410 Omega cm could be effectively machined by EDM with the appropriate machining condition.