Surface Topography Effects on Pool Boiling via Non-equilibrium Molecular Dynamics Simulations

被引:24
|
作者
Lavino, Alessio D. [3 ]
Smith, Edward [1 ]
Magnini, Mirco [2 ]
Matar, Omar K. [3 ]
机构
[1] Brunel Univ London, Dept Mech & Aerosp Engn, Uxbridge UB8 3PH, Middx, England
[2] Univ Nottingham, Dept Mech Mat & Mfg Engn, Nottingham NG7 2RD, England
[3] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
MICRO-STRUCTURED SURFACES; HEAT-TRANSFER; NUMERICAL-SIMULATION; BUBBLE NUCLEATION; ARGON LAYER; MODEL; WETTABILITY; TEMPERATURE; EVAPORATION; FILM;
D O I
10.1021/acs.langmuir.1c00779
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we investigate nucleate pool boiling via non-equilibrium molecular dynamics simulations. The effect of nano-structured surface topography on nucleation and transition to a film-like boiling regime is studied at the molecular scale, by varying the cavity aspect ratio, wall superheat, and wettability through a systematic parametric analysis conducted on a Lennard-Jones (LJ) system. The interplay of the aforementioned factors is rationalized by means of a classical nucleation theory-based model. The solid surface is heated uniformly from the bottom in order to induce the nanobubble nucleation. Insight into the cavity behavior in heat transfer problems is achieved by looking at temperature and heat flux profiles inside the cavity itself, as well as at the time of nucleation, for different operating conditions. The role of the cavity size in controlling the vapor embryo formation is highlighted, and its dependence on the other investigated parameters is summarized in a phase diagram. Our results show that heterogeneity at the nanoscale plays a key role in determining pool boiling heat transfer performance, suggesting a promising approach to optimize nanostructured surfaces for energy and thermal management applications.
引用
收藏
页码:5731 / 5744
页数:14
相关论文
共 50 条
  • [1] Effects of surface nanostructure and wettability on pool boiling: A molecular dynamics study
    Shahmardi, Armin
    Tammisola, Outi
    Chinappi, Mauro
    Brandt, Luca
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 167
  • [2] Polarization of acetonitrile under thermal fields via non-equilibrium molecular dynamics simulations
    Gittus, Oliver R.
    Albella, Pablo
    Bresme, Fernando
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (20)
  • [3] A localized momentum constraint for non-equilibrium molecular dynamics simulations
    Smith, E. R.
    Heyes, D. M.
    Dini, D.
    Zaki, T. A.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (07)
  • [4] Viscosity of Asphalt Binder through Equilibrium and Non-Equilibrium Molecular Dynamics Simulations
    Hu, Xiancheng
    Huang, Xiaohan
    Zhou, Yuanbin
    Zhang, Jiandong
    Lu, Hongquan
    BUILDINGS, 2024, 14 (09)
  • [5] Non-equilibrium molecular dynamics simulations of the spallation in Ni: Effect of vacancies
    Qiu, Tian
    Xiong, Yongnan
    Xiao, Shifang
    Li, Xiaofan
    Hu, Wangyu
    Deng, Huiqiu
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 137 : 273 - 281
  • [6] Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer
    Gong, Shuai
    Cheng, Ping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 85 : 635 - 646
  • [7] The identification of the generalised Maxwell fluid for n-hexadecane liquids via non-equilibrium molecular dynamics simulations
    Tseng, Huan-Chang
    MOLECULAR SIMULATION, 2024, 50 (06) : 463 - 469
  • [8] Nanowire Stretching by Non-Equilibrium Molecular Dynamics
    Heyes, D. M.
    Dini, D.
    Smith, E. R.
    Branka, A. C.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (12):
  • [9] Microscopic insights on clathrate hydrate growth from non-equilibrium molecular dynamics simulations
    Phan, Anh
    Stamatakis, Michail
    Koh, Carolyn A.
    Striolo, Alberto
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 649 : 185 - 193
  • [10] Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations
    Lim, Nathan M.
    Osato, Meghan
    Warren, Gregory L.
    Mobley, David L.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2778 - 2794