Ultra-Confined Catalytic Growth Integration of Sub-10 nm 3D Stacked Silicon Nanowires Via a Self-Delimited Droplet Formation Strategy

被引:16
作者
Hu, Ruijin [1 ]
Liang, Yifei [1 ]
Qian, Wentao [1 ]
Gan, Xin [1 ]
Liang, Lei [1 ]
Wang, Junzhuan [1 ]
Liu, Zongguang [1 ]
Shi, Yi [1 ]
Xu, Jun [1 ]
Chen, Kunji [1 ]
Yu, Linwei [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
3D integration; catalytic growth; in-plane solid-liquid-solid; ultrathin Si nanowires; TRANSISTORS; TFTS;
D O I
10.1002/smll.202204390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of W-nw = 9.9 +/- 1.2 nm (down to 8 nm) and H-nw = 18.8 +/- 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving I-on/off ratio and sub-threshold swing of >10(6) and 125 mV dec(-1), respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.
引用
收藏
页数:9
相关论文
共 42 条
[31]   Nanowire & nanosheet FETs for ultra-applications scaled, high-density logic and memory [J].
Veloso, A. ;
Huynh-Bao, T. ;
Matagne, P. ;
Jang, D. ;
Eneman, G. ;
Horiguchi, N. ;
Ryckaert, J. .
SOLID-STATE ELECTRONICS, 2020, 168
[32]   The path to scalable quantum computing with silicon spin qubits [J].
Vinet, Maud .
NATURE NANOTECHNOLOGY, 2021, 16 (12) :1296-1298
[33]   3D Sidewall Integration of Ultrahigh-Density Silicon Nanowires for Stacked Channel Electronics [J].
Wu, Xiaoxiang ;
Ma, Haiguang ;
Yin, Han ;
Pan, Danfeng ;
Wang, Junzhuan ;
Yu, Linwei ;
Xu, Jun ;
Shi, Yi ;
Chen, Kunji .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (07)
[34]  
Xie R, 2016, INT EL DEVICES MEET
[35]   High performance transparent in-plane silicon nanowire Fin-TFTs via a robust nano-droplet-scanning crystallization dynamics [J].
Xu, Mingkun ;
Wang, Jimmy ;
Xue, Zhaoguo ;
Wang, Junzhuan ;
Feng, Ping ;
Yu, Linwei ;
Xu, Jun ;
Shi, Yi ;
Chen, Kunji ;
Roca i Cabarrocas, Pere .
NANOSCALE, 2017, 9 (29) :10350-10357
[36]   Operating principles of in-plane silicon nanowires at simple step-edges [J].
Xu, Mingkun ;
Xue, Zhaoguo ;
Yu, Linwei ;
Qian, Shengyi ;
Fan, Zheng ;
Wang, Junzhuan ;
Xu, Jun ;
Shi, Yi ;
Chen, Kunji ;
Roca i Cabarrocas, Pere .
NANOSCALE, 2015, 7 (12) :5197-5202
[37]  
Yeap G, 2019, INT EL DEVICES MEET, DOI 10.1109/IEDM19573.2019.8993577
[38]   High Performance Si Nanowire TFTs With Ultrahigh on/off Current Ratio and Steep Subthreshold Swing [J].
Yin, Han ;
Yang, Huafeng ;
Xu, Shun ;
Pan, Danfeng ;
Xu, Jun ;
Chen, Kunji ;
Yu, Linwei .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (01) :46-49
[39]   Growth-in-place deployment of in-plane silicon nanowires [J].
Yu, Linwei ;
Chen, Wanghua ;
O'Donnell, Benedict ;
Patriarche, Gilles ;
Bouchoule, Sophie ;
Pareige, Philippe ;
Rogel, Regis ;
Salaun, Anne Claire ;
Pichon, Laurent ;
Roca i Cabarrocas, Pere .
APPLIED PHYSICS LETTERS, 2011, 99 (20)
[40]   Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires [J].
Yu, Linwei ;
Roca i Cabarrocas, Pere .
PHYSICAL REVIEW B, 2010, 81 (08)