GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH

被引:8
作者
Xue, Yanfang [1 ,2 ]
Tang, Chunlei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400700, Peoples R China
[2] Xin Yang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotically periodic; Sobolev critical exponent; ground state solution; Nehari manifold; CONCENTRATION-COMPACTNESS PRINCIPLE; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; PERTURBATION METHOD; MULTIPLE SOLUTIONS; EXISTENCE; PART; UNIQUENESS; CALCULUS;
D O I
10.3934/cpaa.2018054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrodinger equation: -Delta u + V(x)u -Delta(u(2))u=K(x)vertical bar u vertical bar(22*-2)u+g(x,u),x is an element of R-N (1) where N > 3, V, g are asymptotically periodic functions in x. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (I) under a new reformative condition which unify the asymptotic processes of V, g at infinity.
引用
收藏
页码:1121 / 1145
页数:25
相关论文
共 38 条
[31]   Uniqueness and nondegeneracy of the ground state for a quasilinear Schrodinger equation with a small parameter [J].
Selvitella, Alessandro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1731-1737
[32]   Generalized quasilinear asymptotically periodic Schrodinger equations with critical growth [J].
Shi, Hongxia ;
Chen, Haibo .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (03) :849-858
[33]   Quasilinear asymptotically periodic Schrodinger equations with critical growth [J].
Silva, Elves A. B. ;
Vieira, Gilberto F. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) :1-33
[34]   Quasilinear asymptotically periodic Schrodinger equations with subcritical growth [J].
Silva, Elves A. B. ;
Vieira, Gilberto F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2935-2949
[35]   Non-Nehari manifold method for asymptotically periodic Schrodinger equations [J].
Tang XianHua .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) :715-728
[36]   Multiple solutions for quasilinear Schrodinger equations with a parameter [J].
Wu, Xian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2619-2632
[37]   Ground state solutions for asymptotically periodic Schrodinger equations with indefinite linear part [J].
Zhang, Hui ;
Xu, Junxiang ;
Zhang, Fubao .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (01) :113-122
[38]   On a class of semilinear Schrodinger equations with indefinite linear part [J].
Zhang, Hui ;
Xu, Junxiang ;
Zhang, Fubao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) :710-724