共 38 条
GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH
被引:8
作者:
Xue, Yanfang
[1
,2
]
Tang, Chunlei
[1
]
机构:
[1] Southwest Univ, Sch Math & Stat, Chongqing 400700, Peoples R China
[2] Xin Yang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Asymptotically periodic;
Sobolev critical exponent;
ground state solution;
Nehari manifold;
CONCENTRATION-COMPACTNESS PRINCIPLE;
CRITICAL SOBOLEV EXPONENTS;
ELLIPTIC-EQUATIONS;
SOLITON-SOLUTIONS;
PERTURBATION METHOD;
MULTIPLE SOLUTIONS;
EXISTENCE;
PART;
UNIQUENESS;
CALCULUS;
D O I:
10.3934/cpaa.2018054
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrodinger equation: -Delta u + V(x)u -Delta(u(2))u=K(x)vertical bar u vertical bar(22*-2)u+g(x,u),x is an element of R-N (1) where N > 3, V, g are asymptotically periodic functions in x. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (I) under a new reformative condition which unify the asymptotic processes of V, g at infinity.
引用
收藏
页码:1121 / 1145
页数:25
相关论文