GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH

被引:8
作者
Xue, Yanfang [1 ,2 ]
Tang, Chunlei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400700, Peoples R China
[2] Xin Yang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotically periodic; Sobolev critical exponent; ground state solution; Nehari manifold; CONCENTRATION-COMPACTNESS PRINCIPLE; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; PERTURBATION METHOD; MULTIPLE SOLUTIONS; EXISTENCE; PART; UNIQUENESS; CALCULUS;
D O I
10.3934/cpaa.2018054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrodinger equation: -Delta u + V(x)u -Delta(u(2))u=K(x)vertical bar u vertical bar(22*-2)u+g(x,u),x is an element of R-N (1) where N > 3, V, g are asymptotically periodic functions in x. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (I) under a new reformative condition which unify the asymptotic processes of V, g at infinity.
引用
收藏
页码:1121 / 1145
页数:25
相关论文
共 38 条
[21]   A positive ground state solution for a class of asymptotically periodic Schrodinger equations [J].
Liu, Jiu ;
Liao, Jia-Feng ;
Tang, Chun-Lei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (04) :965-976
[22]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901
[23]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[24]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493
[25]  
Liu XQ, 2013, P AM MATH SOC, V141, P253
[26]   Quasi linear elliptic equations with critical growth via perturbation method [J].
Liu, Xiang-Qing ;
Liu, Jia-Quan ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) :102-124
[27]   Ground states for quasilinear Schrodinger equations with critical growth [J].
Liu, Xiangqing ;
Liu, Jiaquan ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :641-669
[28]   Existence of soliton solutions for a quasilinear Schrodinger equation involving critical exponent in RN [J].
Moameni, Abbas .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (02) :570-587
[29]   On the existence of soliton solutions to quasilinear Schrodinger equations [J].
Poppenberg, M ;
Schmitt, K ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :329-344
[30]   Existence of ground states for a modified nonlinear Schrodinger equation [J].
Ruiz, David ;
Siciliano, Gaetano .
NONLINEARITY, 2010, 23 (05) :1221-1233