GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH

被引:8
作者
Xue, Yanfang [1 ,2 ]
Tang, Chunlei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400700, Peoples R China
[2] Xin Yang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotically periodic; Sobolev critical exponent; ground state solution; Nehari manifold; CONCENTRATION-COMPACTNESS PRINCIPLE; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; PERTURBATION METHOD; MULTIPLE SOLUTIONS; EXISTENCE; PART; UNIQUENESS; CALCULUS;
D O I
10.3934/cpaa.2018054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrodinger equation: -Delta u + V(x)u -Delta(u(2))u=K(x)vertical bar u vertical bar(22*-2)u+g(x,u),x is an element of R-N (1) where N > 3, V, g are asymptotically periodic functions in x. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (I) under a new reformative condition which unify the asymptotic processes of V, g at infinity.
引用
收藏
页码:1121 / 1145
页数:25
相关论文
共 38 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]  
[Anonymous], 1997, Minimax theorems
[3]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[6]   Stability and instability results for standing waves of quasi-linear Schrodinger equations [J].
Colin, Mathieu ;
Jeanjean, Louis ;
Squassina, Marco .
NONLINEARITY, 2010, 23 (06) :1353-1385
[7]   Schrodinger equations with asymptotically periodic terms [J].
de Marchi, Reinaldo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (04) :745-757
[8]   Critical exponents and solitary wave solutions for generalized quasilinear Schrodinger equations [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1228-1262
[9]   Nodal soliton solutions for quasilinear Schrodinger equations with critical exponent [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Wang, Jixiu .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
[10]   QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CONCAVE AND CONVEX NONLINEARITIES [J].
do O, Joao Marcos ;
Severo, Uberlandio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :621-644