Zero Range Process and Multi-Dimensional Random Walks

被引:0
作者
Bogoliubov, Nicolay M. [1 ,2 ]
Malyshev, Cyril [1 ,2 ]
机构
[1] RAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg, Russia
[2] ITMO Univ, Kronverksky 49, St Petersburg, Russia
关键词
zero range process; conditional probability; multi-dimensional random walk; correlation function; symmetric functions; MODELS; PHASE;
D O I
10.3842/SIGMA.2017.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Spectral gap for the zero range process with constant rate [J].
Morris, Ben .
ANNALS OF PROBABILITY, 2006, 34 (05) :1645-1664
[42]   Condensation in the zero range process:: Stationary and dynamical properties [J].
Grosskinsky, S ;
Schütz, GM ;
Spohn, H .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (3-4) :389-410
[43]   Causality Learning from Time Series Data for the Industrial Finance Analysis via the Multi-Dimensional Point Process [J].
Shi, Liangliang ;
Lu, Peili ;
Yan, Junchi .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2020, 26 (05) :873-885
[44]   Strong relaxation limit of multi-dimensional isentropic Euler equations [J].
Xu, Jiang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (03) :389-400
[45]   An efficient method for simulation of noisy coupled multi-dimensional oscillators [J].
Stinchcombe, Adam R. ;
Forger, Daniel B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 :932-946
[46]   Multi-Dimensional Scaling of Sparse Block Diagonal Similarity Matrix [J].
Imaizumi, Tadashi .
DATA SCIENCE: INNOVATIVE DEVELOPMENTS IN DATA ANALYSIS AND CLUSTERING, 2017, :259-272
[47]   A W*-correspondence approach to multi-dimensional linear dissipative systems [J].
Ball, J. A. ;
ter Horst, S. .
NDS: 2009 INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS, 2009, :46-53
[48]   A Multi-Dimensional Functional Principal Components Analysis of EEG Data [J].
Hasenstab, Kyle ;
Scheffler, Aaron ;
Telesca, Donatello ;
Sugar, Catherine A. ;
Jeste, Shafali ;
DiStefano, Charlotte ;
Senturk, Damla .
BIOMETRICS, 2017, 73 (03) :999-1009
[49]   MQD - Multiplex-Quadrature Detection in Multi-Dimensional NMR [J].
Schlagnitweit, Judith ;
Hornicakova, Michaela ;
Zuckerstaetter, Gerhard ;
Mueller, Norbert .
CHEMPHYSCHEM, 2012, 13 (01) :342-346
[50]   Multi-dimensional band structure spectroscopy in the synthetic frequency dimension [J].
Cheng, Dali ;
Lustig, Eran ;
Wang, Kai ;
Fan, Shanhui .
LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)