Zero Range Process and Multi-Dimensional Random Walks

被引:0
作者
Bogoliubov, Nicolay M. [1 ,2 ]
Malyshev, Cyril [1 ,2 ]
机构
[1] RAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg, Russia
[2] ITMO Univ, Kronverksky 49, St Petersburg, Russia
关键词
zero range process; conditional probability; multi-dimensional random walk; correlation function; symmetric functions; MODELS; PHASE;
D O I
10.3842/SIGMA.2017.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Boundary driven zero-range processes in random media
    Pulkkinen, Otto
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (06) : 1289 - 1305
  • [22] Transport in Quantum Multi-barrier Systems as Random Walks on a Lattice
    Cirillo, E. N. M.
    Colangeli, M.
    Rondoni, L.
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (03) : 692 - 709
  • [23] Boundary Driven Zero-Range Processes in Random Media
    Otto Pulkkinen
    Journal of Statistical Physics, 2007, 128 : 1289 - 1305
  • [24] Transport in Quantum Multi-barrier Systems as Random Walks on a Lattice
    E. N. M. Cirillo
    M. Colangeli
    L. Rondoni
    Journal of Statistical Physics, 2019, 176 : 692 - 709
  • [25] Matrix product formula for Uq(A2(1))-zero range process
    Kuniba, Atsuo
    Okado, Masato
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (04)
  • [26] Guided proposals for simulating multi-dimensional diffusion bridges
    Schauer, Moritz
    Van Der Meulen, Frank
    Van Zanten, Harry
    BERNOULLI, 2017, 23 (4A) : 2917 - 2950
  • [27] On the canonical forms of the multi-dimensional averaged Poisson brackets
    Maltsev, A. Ya.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
  • [28] Multi-dimensional damage measure for seismic reliability analysis
    De Risi, Raffaele
    Goda, Katsuichiro
    Tesfamariam, Solomon
    STRUCTURAL SAFETY, 2019, 78 : 1 - 11
  • [29] Multi-dimensional chemo-osmotic consolidation of clays
    Li, Yu-Chao
    Cleall, P. J.
    Thomas, H. R.
    COMPUTERS AND GEOTECHNICS, 2011, 38 (04) : 423 - 429
  • [30] Neural Causality Detection for Multi-dimensional Point Processes
    Wang, Tianyu
    Walder, Christian
    Gedeon, Tom
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 509 - 521