Staggered time integrators for wave equations

被引:76
作者
Ghrist, M [1 ]
Fornberg, B
Driscoll, TA
机构
[1] Belmont Univ, Dept Math & Comp Sci, Nashville, TN 37212 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[3] Univ Delaware, Dept Math, Newark, DE 19716 USA
关键词
finite differences; staggered grid; linear multistep methods; Runge-Kutta methods; stability domain; imaginary stability boundary; root portrait;
D O I
10.1137/S0036142999351777
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider variations of the Adams-Bashforth, backward differentiation, and Runge Kutta families of time integrators to solve systems of linear wave equations on uniform, time-staggered grids. These methods are found to have smaller local truncation errors and to allow larger stable time steps than traditional nonstaggered versions of equivalent orders. We investigate the accuracy and stability of these methods analytically, experimentally, and through the use of a novel root portrait technique.
引用
收藏
页码:718 / 741
页数:24
相关论文
共 9 条
[1]  
[Anonymous], 1991, SOLVING ORDINARY DIF
[2]  
Dahlquist G., 1953, MATH SCAND, V4, P33, DOI DOI 10.7146/MATH.SCAND.A-10454
[3]   Calculation of weights in finite difference formulas [J].
Fornberg, B .
SIAM REVIEW, 1998, 40 (03) :685-691
[4]   Spatial finite difference approximations for wave-type equations [J].
Fornberg, B ;
Ghrist, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :105-130
[5]   HIGH-ORDER FINITE-DIFFERENCES AND THE PSEUDOSPECTRAL METHOD ON STAGGERED GRIDS [J].
FORNBERG, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :904-918
[6]  
GHRIST ML, 2000, THESIS U COLORADO BO
[7]   DAHLQUIST 1ST BARRIER FOR MULTISTAGE MULTISTEP FORMULAS [J].
JELTSCH, R ;
NEVANLINNA, O .
BIT, 1984, 24 (04) :538-555
[8]   STABILITY OF EXPLICIT TIME DISCRETIZATIONS FOR SOLVING INITIAL VALUE-PROBLEMS [J].
JELTSCH, R ;
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1981, 37 (01) :61-91
[9]  
Taflove A., 1995, COMPUTATIONAL ELECTR