Witt vectors with coefficients and characteristic polynomials over non-commutative rings

被引:3
作者
Dotto, Emanuele [1 ]
Krause, Achim [2 ]
Nikolaus, Thomas [2 ]
Patchkoria, Irakli [3 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Univ Munster, Math Inst, D-48149 Munster, Germany
[3] Univ Aberdeen, Dept Math, Aberdeen AB24 3UE, Scotland
关键词
Witt vectors; characteristic polynomial; trace; TRACE;
D O I
10.1112/S0010437X22007254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a not-necessarily commutative ring R we define an abelian group W (R; M) of Witt vectors with coefficients in an R-bimodule M. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that W(R) := W(R; R) is Morita invariant in R. For an R-linear endomorphism f of a finitely generated projective R-module we define a characteristic element chi(f) is an element of W(R). This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment f bar right arrow chi(f) induces an isomorphism between a suitable completion of cyclic K-theory K-0(cyc)(R) and W(R).
引用
收藏
页码:366 / 408
页数:44
相关论文
共 22 条
[1]   GROTHENDIECK RING OF CATEGORY OF ENDOMORPHISMS [J].
ALMKVIST, G .
JOURNAL OF ALGEBRA, 1974, 28 (03) :375-388
[2]  
[Anonymous], 1998, SPRINGER MONOGRAPHS
[3]  
[Anonymous], 1965, Topology
[4]  
Bourbaki N., 2007, TOPOLOGIE GEN CHAP 5, V3
[5]   GROUP-LIKE STRUCTURES IN GENERAL CATEGORIES .1. MULTIPLICATIONS AND COMULTIPLICATIONS [J].
ECKMANN, B ;
HILTON, PJ .
MATHEMATISCHE ANNALEN, 1962, 145 (03) :227-255
[6]   GROTHENDIECK RINGS AND WITT VECTORS [J].
GRAYSON, DR .
COMMUNICATIONS IN ALGEBRA, 1978, 6 (03) :249-255
[7]   RANK ELEMENT OF A PROJECTIVE MODULE [J].
HATTORI, A .
NAGOYA MATHEMATICAL JOURNAL, 1965, 25 (MAR) :113-&
[8]   Witt vectors of non-commutative rings and topological cyclic homology [J].
Hesselholt, L .
ACTA MATHEMATICA, 1997, 178 (01) :109-141
[9]   On the K-theory of finite algebras over Witt vectors of perfect fields [J].
Hesselholt, L ;
Madsen, I .
TOPOLOGY, 1997, 36 (01) :29-101
[10]   The big de Rham-Witt complex [J].
Hesselholt, Lars .
ACTA MATHEMATICA, 2015, 214 (01) :135-207