On a class of sublinear operators in variable exponent Morrey-type spaces

被引:3
作者
Rafeiro, H. [1 ]
Samko, S. [2 ,3 ]
机构
[1] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Abu Dhabi, U Arab Emirates
[2] Univ Algarve, Fac Sci & Technol, Faro, Portugal
[3] Russian Acad Sci, Kh Ibragimov Complex Inst, Grozny, Russia
基金
俄罗斯基础研究基金会;
关键词
Sublinear operators; Morrey-type spaces; variable exponent; MAXIMAL OPERATOR; RECENT PROGRESS; REAL ANALYSIS; BOUNDEDNESS;
D O I
10.1080/17476933.2021.1924156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of sublinear operators, we find conditions on the variable exponent Morrey-type space L-p(.),L-q,L-omega(.,L-.)(R-n) ensuring the boundedness in this space. A priori assumptions on this class are that the operators are bounded in L-p(.)(R-n) and satisfy some size condition. This class includes in particular the maximal operator, singular operators with the standard kernel, and the Hardy operators. Wealso prove embedding of variable exponent Morrey-type spaces into weighted L-p(.)-spaces.
引用
收藏
页码:683 / 700
页数:18
相关论文
共 35 条
[21]  
Kokilashvili, 2016, OPERATOR THEORY ADV, V248
[22]  
Kokilashvili V, 2016, OPER THEORY ADV APPL, V249, P569, DOI 10.1007/978-3-319-21018-6
[23]  
Kokilashvili V., 2016, VARIABLE EXPONENT H, V2
[24]  
Lu G., 2002, Anal. Math, V28, P103, DOI [10.1023/A:1016568918973, DOI 10.1023/A:1016568918973]
[25]  
Matuszewska W., 1965, Stud. Math, V26, P11, DOI DOI 10.4064/SM-26-1-11-24
[26]  
Matuszewska W., 1960, Bull. Acad. Polon. Sci, V8, P439
[27]   A note on the boundedness of sublinear operators on grand variable Herz spaces [J].
Nafis, Hammad ;
Rafeiro, Humberto ;
Zaighum, Muhammad Asad .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[28]  
Rafeiro H., 2013, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, V228, P293
[29]   Coincidence of Variable Exponent Herz Spaces with Variable Exponent Morrey Type Spaces and Boundedness of Sublinear Operators in these Spaces [J].
Rafeiro, Humberto ;
Samko, Stefan .
POTENTIAL ANALYSIS, 2022, 56 (03) :437-457
[30]   Herz Spaces Meet Morrey Type Spaces and Complementary Morrey Type Spaces [J].
Rafeiro, Humberto ;
Samko, Stefan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (05)