On a class of sublinear operators in variable exponent Morrey-type spaces

被引:3
作者
Rafeiro, H. [1 ]
Samko, S. [2 ,3 ]
机构
[1] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Abu Dhabi, U Arab Emirates
[2] Univ Algarve, Fac Sci & Technol, Faro, Portugal
[3] Russian Acad Sci, Kh Ibragimov Complex Inst, Grozny, Russia
基金
俄罗斯基础研究基金会;
关键词
Sublinear operators; Morrey-type spaces; variable exponent; MAXIMAL OPERATOR; RECENT PROGRESS; REAL ANALYSIS; BOUNDEDNESS;
D O I
10.1080/17476933.2021.1924156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of sublinear operators, we find conditions on the variable exponent Morrey-type space L-p(.),L-q,L-omega(.,L-.)(R-n) ensuring the boundedness in this space. A priori assumptions on this class are that the operators are bounded in L-p(.)(R-n) and satisfy some size condition. This class includes in particular the maximal operator, singular operators with the standard kernel, and the Hardy operators. Wealso prove embedding of variable exponent Morrey-type spaces into weighted L-p(.)-spaces.
引用
收藏
页码:683 / 700
页数:18
相关论文
共 35 条
[1]  
Adams, 1981, UMEA U REPORTS
[2]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[3]   Embeddings of local generalized Morrey spaces between weighted Lebesgue spaces [J].
Almeida, Alexandre ;
Samko, Stefan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 :67-76
[4]   Maximal, potential and singular type operators on Herz spaces with variable exponents [J].
Almeida, Alexandre ;
Drihem, Douadi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :781-795
[5]  
[Anonymous], 2016, OPER THEORY ADV APPL
[6]  
Burenkov VI, 2013, EURASIAN MATH J, V4, P21
[7]  
Burenkov VI, 2012, EURASIAN MATH J, V3, P11
[8]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[9]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[10]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197