High sulfur loading application with the assistance of an extremely light-weight multifunctional layer on the separator for lithium-sulfur batteries

被引:4
|
作者
Qiu, Xiang-yun [1 ,2 ]
Hua, Qing-song [1 ,2 ]
Dai, Zuo-qiang [1 ,2 ]
Zheng, Zong-min [1 ,2 ]
Wang, Fa-jie [1 ,2 ]
Zhang, Hong-xin [1 ,2 ]
机构
[1] Qingdao Univ, Sch Mech & Elect Engn, Power & Energy Storage Syst Res Ctr, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
[2] Natl Engn Res Ctr Intelligent Elect Vehicle Power, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-sulfur batteries; Multifunction separator; Reduced graphene oxide; High sulfur loading; HIGH-ENERGY DENSITY; LI-S BATTERIES; CARBON; PERFORMANCE; CATHODE; MECHANISM; DESIGN;
D O I
10.1007/s11581-019-03271-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For high-energy density lithium-sulfur (Li-S) batteries, the effective active material loading, cyclic stability, and modification hardly any effect on energy density are crucial factors, but these three indicators seem contradictory in most case. In this paper, cells with a high sulfur loading, 4.3 mg cm(-2), demonstrate excellent performances with the assistance of reduced graphene oxide (rGO) modified on the separator, and the density of modified layer is only 0.1 mg cm(-2), which is hardly any effect on energy density. Moreover, in order to understand the improvement mechanism of the modified layer, graphene oxide (GO) modified layer is also to be applied for comparison, which is also helpful to establish cognition to select other modification layers. Most important of all, the application of high sulfur loading is generally required for practical Li-S batteries and the extremely light-weight modified layer is beneficial to the exertion of the whole energy density.
引用
收藏
页码:1139 / 1147
页数:9
相关论文
共 50 条
  • [1] High sulfur loading application with the assistance of an extremely light-weight multifunctional layer on the separator for lithium-sulfur batteries
    Xiang-yun Qiu
    Qing-song Hua
    Zuo-qiang Dai
    Zong-min Zheng
    Fa-jie Wang
    Hong-xin Zhang
    Ionics, 2020, 26 : 1139 - 1147
  • [2] Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries
    Wu, Feng
    Qian, Ji
    Chen, Renjie
    Ye, Yusheng
    Sun, Zhiguo
    Xing, Yi
    Li, Li
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) : 17033 - 17041
  • [3] Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium-Sulfur Batteries
    Guo, Rongnan
    Yang, Yi
    Huang, Xiang Long
    Zhao, Chongchong
    Hu, Binbin
    Huo, Feng
    Liu, Hua Kun
    Sun, Bowen
    Sun, Zixu
    Dou, Shi Xue
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (01)
  • [4] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [5] Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries
    Chung, Sheng-Heng
    Manthiram, Arumugam
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (33) : 5299 - 5306
  • [6] A Multifunctional Inorganic Composite Separator for Stable High-Safety Lithium-Sulfur Batteries
    Rao, Zhixiang
    Meng, Jintao
    Wu, Jingyi
    Yu, Shijin
    Fu, Qiuyun
    Huang, Yunhui
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10): : 10139 - 10146
  • [7] Research Progress on Multifunctional Modified Separator for Lithium-Sulfur Batteries
    Wang, Ying
    Ai, Rui
    Wang, Fei
    Hu, Xiuqiong
    Zeng, Yuejing
    Hou, Jiyue
    Zhao, Jinbao
    Zhang, Yingjie
    Zhang, Yiyong
    Li, Xue
    POLYMERS, 2023, 15 (04)
  • [8] Construction of multifunctional and flame retardant separator towards stable lithium-sulfur batteries with high safety
    Wang, Junling
    Cai, Wei
    Mu, Xiaowei
    Han, Longfei
    Wu, Na
    Liao, Can
    Kan, Yongchun
    Hu, Yuan
    CHEMICAL ENGINEERING JOURNAL, 2021, 416
  • [9] Fabrication of a Light-Weight Dual-Function Modified Separator towards High-Performance Lithium-Sulfur Batteries
    Yi, Ruowei
    Lin, Xiangfei
    Zhao, Yinchao
    Liu, Chenguang
    Li, Yinqing
    Hardwick, Laurence J.
    Yang, Li
    Zhao, Cezhou
    Geng, Xianwei
    Zhang, Qian
    CHEMELECTROCHEM, 2019, 6 (14) : 3648 - 3656
  • [10] Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium-sulfur batteries
    Han, Yamiao
    Duan, Xiaobo
    Li, Yanbing
    Huang, Liwu
    Zhu, Ding
    Chen, Yungui
    MATERIALS RESEARCH BULLETIN, 2015, 68 : 160 - 165