High sulfur loading application with the assistance of an extremely light-weight multifunctional layer on the separator for lithium-sulfur batteries

被引:5
作者
Qiu, Xiang-yun [1 ,2 ]
Hua, Qing-song [1 ,2 ]
Dai, Zuo-qiang [1 ,2 ]
Zheng, Zong-min [1 ,2 ]
Wang, Fa-jie [1 ,2 ]
Zhang, Hong-xin [1 ,2 ]
机构
[1] Qingdao Univ, Sch Mech & Elect Engn, Power & Energy Storage Syst Res Ctr, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
[2] Natl Engn Res Ctr Intelligent Elect Vehicle Power, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-sulfur batteries; Multifunction separator; Reduced graphene oxide; High sulfur loading; HIGH-ENERGY DENSITY; LI-S BATTERIES; CARBON; PERFORMANCE; CATHODE; MECHANISM; DESIGN;
D O I
10.1007/s11581-019-03271-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For high-energy density lithium-sulfur (Li-S) batteries, the effective active material loading, cyclic stability, and modification hardly any effect on energy density are crucial factors, but these three indicators seem contradictory in most case. In this paper, cells with a high sulfur loading, 4.3 mg cm(-2), demonstrate excellent performances with the assistance of reduced graphene oxide (rGO) modified on the separator, and the density of modified layer is only 0.1 mg cm(-2), which is hardly any effect on energy density. Moreover, in order to understand the improvement mechanism of the modified layer, graphene oxide (GO) modified layer is also to be applied for comparison, which is also helpful to establish cognition to select other modification layers. Most important of all, the application of high sulfur loading is generally required for practical Li-S batteries and the extremely light-weight modified layer is beneficial to the exertion of the whole energy density.
引用
收藏
页码:1139 / 1147
页数:9
相关论文
共 54 条
[1]   A lithium-ion sulfur battery using a polymer, polysulfide-added membrane [J].
Agostini, Marco ;
Hassoun, Jusef .
SCIENTIFIC REPORTS, 2015, 5
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[4]   AB-INITIO STUDY OF THE ELECTRONIC-STRUCTURES OF LITHIUM-CONTAINING DIATOMIC-MOLECULES AND IONS [J].
BOLDYREV, AI ;
SIMONS, J ;
SCHLEYER, PV .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (11) :8793-8804
[5]   Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy [J].
Canas, Natalia A. ;
Hirose, Kei ;
Pascucci, Brigitta ;
Wagner, Norbert ;
Friedrich, K. Andreas ;
Hiesgen, Renate .
ELECTROCHIMICA ACTA, 2013, 97 :42-51
[6]   Immobilization of sulfur in microgels for lithium-sulfur battery [J].
Chang, Aiping ;
Wu, Qingshi ;
Du, Xue ;
Chen, Shoumin ;
Shen, Jing ;
Song, Qiuyi ;
Xie, Jianda ;
Wu, Weitai .
CHEMICAL COMMUNICATIONS, 2016, 52 (24) :4525-4528
[7]   Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life [J].
Chen, Shuangqiang ;
Sun, Bing ;
Xie, Xiuqiang ;
Mondal, Anjon Kumar ;
Huang, Xiaodan ;
Wang, Guoxiu .
NANO ENERGY, 2015, 16 :268-280
[8]   Lithium-sulfur batteries with superior cycle stability by employing porous current collectors [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHIMICA ACTA, 2013, 107 :569-576
[9]   Li-S batteries: simple approaches for superior performance [J].
Demir-Cakan, Rezan ;
Morcrette, Mathieu ;
Gangulibabu ;
Gueguen, Aurelie ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (01) :176-182
[10]   Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading [J].
Deng, Zhaofeng ;
Zhang, Zhian ;
Lai, Yanqing ;
Liu, Jin ;
Li, Jie ;
Liu, Yexiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A553-A558