Data Augmentation for Edge-AI on-chip Learning

被引:0
作者
Yoshida, Naoto [1 ]
Miura, Hina [1 ]
Matsutani, Takashi [1 ]
Motomura, Hideto [1 ]
机构
[1] MegaChips Corp, AI Div, Osaka, Japan
来源
2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT | 2022年
关键词
data augmentation; edge-AI; on-chip learning;
D O I
10.1109/WF-IoT54382.2022.10152266
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study applied data augmentation to improve the inference accuracy of edge-artificial intelligence on-chip learning, which uses the fine-tuning technique with limited knowledge and without a cloud server. Subsequently, keyword spotting was adopted as an example of the edge-AI application to evaluate inference accuracy. Investigations revealed that all four data augmentation types contributed to inference accuracy improvements, boosting data augmentation by 5.7 times rather than the one-shot boost without data augmentation recorded previously.
引用
收藏
页数:6
相关论文
共 9 条
  • [1] brainchip, AK EN PLATF
  • [2] brainchipinc, OV MET
  • [3] brainchipinc, DS CNN KWS INF
  • [4] brainchipinc, MOD ZOO PERF
  • [5] Chollet F, 2017, Arxiv, DOI [arXiv:1610.02357, DOI 10.48550/ARXIV.1610.02357]
  • [6] COMPARISON OF PARAMETRIC REPRESENTATIONS FOR MONOSYLLABIC WORD RECOGNITION IN CONTINUOUSLY SPOKEN SENTENCES
    DAVIS, SB
    MERMELSTEIN, P
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (04): : 357 - 366
  • [7] Horowitz M, 2014, ISSCC DIG TECH PAP I, V57, P10, DOI 10.1109/ISSCC.2014.6757323
  • [8] Rethinking the Role of Normalization and Residual Blocks for Spiking Neural Networks
    Ikegawa, Shin-ichi
    Saiin, Ryuji
    Sawada, Yoshihide
    Natori, Naotake
    [J]. SENSORS, 2022, 22 (08)
  • [9] Warden P, 2018, Arxiv, DOI arXiv:1804.03209