Disease modeling using human induced pluripotent stem cells: Lessons from the liver

被引:6
|
作者
Gieseck, Richard L., III [1 ,2 ]
Colquhoun, Jennifer [1 ]
Hannan, Nicholas R. F. [1 ]
机构
[1] Univ Cambridge, Dept Surg, Anne McLaren Lab Regenerat Med, Cambridge, England
[2] NIAID, Immunopathogenesis Sect, Parasit Dis Lab, NIH, Bethesda, MD USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 2015年 / 1851卷 / 01期
关键词
hIPSC; Liver; Stem cells; Lipid disorders; Human development; Disease modeling; GERM LAYER FORMATION; EMBRYOID BODIES; DIFFERENTIATION; ENDODERM; GENERATION; LINES; TERATOCARCINOMA; PROGENITORS; BLASTOCYST; FATE;
D O I
10.1016/j.bbalip.2014.05.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 89
页数:14
相关论文
共 50 条
  • [1] New lessons learned from disease modeling with induced pluripotent stem cells
    Onder, Tamer T.
    Daley, George Q.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2012, 22 (05) : 500 - 508
  • [2] Modeling Disease with Human Inducible Pluripotent Stem Cells
    Grandy, Rodrigo
    Tomaz, Rute A.
    Vallier, Ludovic
    ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 14, 2019, 14 : 449 - 468
  • [3] Human disease modeling with induced pluripotent stem cells
    Trounson, Alan
    Shepard, Kelly A.
    DeWitt, Natalie D.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2012, 22 (05) : 509 - 516
  • [4] Modeling Leukemia with Human Induced Pluripotent Stem Cells
    Papapetrou, Eirini P.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (12):
  • [5] MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling
    Underbayev, Chingiz
    Kasar, Siddha
    Yuan, Yao
    Raveche, Elizabeth
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2012,
  • [6] Derivation of Human Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling
    Narsinh, Kamileh
    Narsinh, Kazim H.
    Wu, Joseph C.
    CIRCULATION RESEARCH, 2011, 108 (09) : 1146 - 1156
  • [7] Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells
    Ho, Beatrice Xuan
    Pek, Nicole Min Qian
    Soh, Boon-Seng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (04)
  • [8] Novel Insights into Disease Modeling Using Induced Pluripotent Stem Cells
    Egashira, Toru
    Yuasa, Shinsuke
    Fukuda, Keiichi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2013, 36 (02) : 182 - 188
  • [9] Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells
    Xu, Xiao-hong
    Zhong, Zhong
    ACTA PHARMACOLOGICA SINICA, 2013, 34 (06) : 755 - 764
  • [10] Modeling placental development and disease using human pluripotent stem cells
    Morey, Robert
    Bui, Tony
    Fisch, Kathleen M.
    Horii, Mariko
    PLACENTA, 2023, 141 : 18 - 25