Spatio-Temporal Sentiment Hotspot Detection Using Geotagged Photos

被引:13
|
作者
Zhu, Yi [1 ]
Newsam, Shawn [1 ]
机构
[1] Univ Calif Merced, Elect Engn & Comp Sci, Merced, CA 95340 USA
来源
24TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2016) | 2016年
基金
美国国家科学基金会;
关键词
Hotspot detection; emotion recognition; geotagged photos; spatio-temporal geographic analysis; deep learning;
D O I
10.1145/2996913.2996978
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We perform spatio-temporal analysis of public sentiment using geotagged photo collections. We develop a deep learning-based classifier that predicts the emotion conveyed by an image. This allows us to associate sentiment with place. We perform spatial hotspot detection and show that different emotion shave distinct spatial distributions that match expectations. We also perform temporal analysis using the capture time of the photos. Our spatio-temporal hotspot detection correctly identifies emerging concentrations of specific emotions and year-by-year analyses of select locations show there are strong temporal correlations between the predicted emotions and known events.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Anomaly Detection with Spatio-Temporal Context Using Depth Images
    Ma, Xiaolin
    Lu, Tong
    Xu, Feiming
    Su, Feng
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2590 - 2593
  • [32] Spatio-temporal action detection and localization using a hierarchical LSTM
    Ramaswamy, Akshaya
    Seemakurthy, Karthik
    Gubbi, Jayavardhana
    Purushothaman, Balamuralidhar
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3303 - 3312
  • [33] Lens Adhering Contaminant Detection Using Spatio-Temporal Blur
    Akkala, Vivek
    Parikh, Parth
    Mahesh, B. S.
    Deshmukh, Ajinkya S.
    Medasani, Swamp
    2016 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2016,
  • [34] Spatio-Temporal Change Detection Using Granger Sequence Pattern
    Pavasant, Nat
    Numao, Masayuki
    Fukui, Ken-ichi
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5202 - 5203
  • [35] Improving Video Concept Detection Using Spatio-Temporal Correlation
    Zhu, Songhao
    Liang, Zhiwei
    Liu, Yuncai
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 46 - +
  • [36] Object detection using spatio-temporal thresholding in image sequences
    Cho, JH
    Kim, SD
    ELECTRONICS LETTERS, 2004, 40 (18) : 1109 - 1110
  • [37] Spatio-temporal analysis of cetacean strandings and bycatch in a UK fisheries hotspot
    Ruth H. Leeney
    Rachel Amies
    Annette C. Broderick
    Matthew J. Witt
    Jan Loveridge
    Joana Doyle
    Brendan J. Godley
    Biodiversity and Conservation, 2008, 17
  • [38] Spatio-temporal analysis of cetacean strandings and bycatch in a UK fisheries hotspot
    Leeney, Ruth H.
    Amies, Rachel
    Broderick, Annette C.
    Witt, Matthew J.
    Loveridge, Jan
    Doyle, Joana
    Godley, Brendan J.
    BIODIVERSITY AND CONSERVATION, 2008, 17 (10) : 2323 - 2338
  • [39] Urban hotspot forecasting via automated spatio-temporal information fusion
    Jin, Guangyin
    Sha, Hengyu
    Xi, Zhexu
    Huang, Jincai
    APPLIED SOFT COMPUTING, 2023, 136
  • [40] Spatio-temporal compounding of connected extreme events: Projection and hotspot identification
    Velpuri, Manikanta
    Das, Jew
    Umamahesh, N. V.
    ENVIRONMENTAL RESEARCH, 2023, 235