Well-posedness of stochastic second grade fluids

被引:16
作者
Chemetov, Nikolai [1 ]
Cipriano, Fernanda [2 ,3 ]
机构
[1] Univ Lisbon, Dept Matemat, Fac Ciencias, Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Lisbon, Portugal
[3] Ctr Matemat & Aplicacoes, Lisbon, Portugal
关键词
Second grade fluid; Solvability; Stability; Stochastic; NAVIER-STOKES EQUATIONS; INVISCID LIMIT; EULER EQUATIONS; COMPLEX FLUID; ALPHA MODEL; CONVERGENCE; WEAK;
D O I
10.1016/j.jmaa.2017.04.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of turbulent Newtonian fluids shows that the choice of the boundary condition is a relevant issue because it can modify the behavior of a fluid by creating or avoiding a strong boundary layer. In this study, we consider stochastic second grade fluids filling a two-dimensional bounded domain with the Navier-slip boundary condition (with friction). We prove the well-posedness of this problem and establish a stability result. Our stochastic model involves a multiplicative white noise and a convective term with third order derivatives, which significantly complicate the analysis. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:585 / 616
页数:32
相关论文
共 36 条
[1]   Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients [J].
Albeverio, Sergio ;
Brzezniak, Zdzislaw ;
Wu, Jiang-Lun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :309-322
[2]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[3]  
Breckner H.I., 1999, THESIS
[4]   Incompressible Euler as a limit of complex fluid models with Navier boundary conditions [J].
Busuioc, A. V. ;
Iftimie, D. ;
Lopes Filho, M. C. ;
Lopes, H. J. Nussenzveig .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) :624-640
[5]   A non-Newtonian fluid with Navier boundary conditions [J].
Busuioc, Adriana Valentina ;
Iftimie, Dragos .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (02) :357-379
[6]   The second grade fluid and averaged Euler equations with Navier-slip boundary conditions [J].
Busuioc, AV ;
Ratiu, TS .
NONLINEARITY, 2003, 16 (03) :1119-1149
[7]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[8]   Inviscid limit for Navier-Stokes equations in domains with permeable boundaries [J].
Chemetov, N. V. ;
Cipriano, F. .
APPLIED MATHEMATICS LETTERS, 2014, 33 :6-11
[9]   The Inviscid Limit for the Navier-Stokes Equations with Slip Condition on Permeable Walls [J].
Chemetov, N. V. ;
Cipriano, F. .
JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (05) :731-750
[10]   Boundary layer problem: Navier-Stokes equations and Euler equations [J].
Chemetov, N. V. ;
Cipriano, F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (06) :2091-2104