Exact conditions on the temperature dependence of density functionals

被引:26
作者
Burke, K. [1 ,2 ]
Smith, J. C. [1 ]
Grabowski, P. E. [1 ]
Pribram-Jones, A. [3 ,4 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[3] Lawrence Livermore Natl Lab, 7000 East Ave,L-413, Livermore, CA 94550 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ELECTRON LIQUID; EXCHANGE;
D O I
10.1103/PhysRevB.93.195132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Path-Integral Monte Carlo Simulation of the Warm Dense Homogeneous Electron Gas [J].
Brown, Ethan W. ;
Clark, Bryan K. ;
DuBois, Jonathan L. ;
Ceperley, David M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[2]   Density-functional-theory approach to the thermodynamics of the harmonically confined one-dimensional Hubbard model [J].
Campo, V. L. .
PHYSICAL REVIEW A, 2015, 92 (01)
[3]   The Hubbard dimer: a density functional case study of a many-body problem [J].
Carrascal, D. J. ;
Ferrer, J. ;
Smith, J. C. ;
Burke, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (39)
[4]   Electronic Structure of Warm Dense Copper Studied by Ultrafast X-Ray Absorption Spectroscopy [J].
Cho, B. I. ;
Engelhorn, K. ;
Correa, A. A. ;
Ogitsu, T. ;
Weber, C. P. ;
Lee, H. J. ;
Feng, J. ;
Ni, P. A. ;
Ping, Y. ;
Nelson, A. J. ;
Prendergast, D. ;
Lee, R. W. ;
Falcone, R. W. ;
Heimann, P. A. .
PHYSICAL REVIEW LETTERS, 2011, 106 (16)
[5]   ELECTRON LIQUID AT ANY DEGENERACY [J].
DANDREA, RG ;
ASHCROFT, NW ;
CARLSSON, AE .
PHYSICAL REVIEW B, 1986, 34 (04) :2097-2111
[6]   First-principles calculation of entropy for liquid metals [J].
Desjarlais, Michael P. .
PHYSICAL REVIEW E, 2013, 88 (06)
[7]   HARMONIC-POTENTIAL THEOREM - IMPLICATIONS FOR APPROXIMATE MANY-BODY THEORIES [J].
DOBSON, JF .
PHYSICAL REVIEW LETTERS, 1994, 73 (16) :2244-2247
[8]   Scaling, bounds, and inequalities for the noninteracting density functionals at finite temperature [J].
Dufty, James W. ;
Trickey, S. B. .
PHYSICAL REVIEW B, 2011, 84 (12)
[9]   Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature [J].
Filinov, V. S. ;
Fortov, V. E. ;
Bonitz, M. ;
Moldabekov, Zh. .
PHYSICAL REVIEW E, 2015, 91 (03)
[10]  
Graziani F., 2014, LECT NOTES COMPUTATI, V96