Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy

被引:7
作者
Annesi, Ferdinanda [1 ]
Pane, Alfredo [1 ]
Pezzi, Luigia [1 ]
Pagliusi, Pasquale [1 ,3 ]
Losso, Maria Adele [2 ]
Stamile, Barbara [2 ]
Qualtieri, Antonio [4 ]
Desiderio, Giovanni [1 ]
Contardi, Marco [5 ]
Athanassiou, Athanassia [5 ]
Perotto, Giovanni [5 ]
De Sio, Luciano [1 ,6 ]
机构
[1] Inst Nanotec, CNR Lab, Licryl, I-87036 Arcavacata Di Rende, Italy
[2] Univ Calabria, Dept DiBEST Biol Ecol & Earth Sci, I-87036 Arcavacata Di Rende, Italy
[3] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, Italy
[4] CNR, Inst Biomed Res & Innovat IRIB, I-87050 Cosenza, Italy
[5] Ist Italian Tecnol IIT, Smart Mat, Via Morego 30, I-16163 Genoa, Italy
[6] Sapienza Univ Rome, Ctr Biophoton, Dept Med Surg Sci & Biotechnol, Corso Repubbl 79, I-04100 Latina, Italy
关键词
GOLD NANOPARTICLES; TEMPERATURE; COMPOSITES; MECHANISMS; CELLULOSE; HEAT;
D O I
10.1016/j.colsurfa.2021.126950
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the synthesis, characterization, and application of biomimetic, spherical Au nanoparticles (AuNPs) coated with keratin (Ker-AuNPs). They are characterized in terms of morphological, spectral, and thermo-optical properties. Besides their excellent colloidal stability, Ker-AuNPs exhibit excellent biocompatibility. The latter is verified by performing viability assay experiments of a strain of Escherichia coli (E. coli) in the presence of Ker-AuNPs as a function of the incubation time. Ker-AuNPs do not affect the E. coli viability and proliferation, even at the highest concentration tested (C = 5.83*10(-5) M). Photo-thermal assisted viability experiments are performed by setting the starting temperature at 37 degrees C, mimicking the normal human body temperature condition. They evidence the capability of the Ker-AuNPs to generate a temperature up to about 73 degrees C (an increase of 36 degrees C), thus reducing the viability of bacterial cells 3 order of magnitudes. We also conducted a theoretical analysis with an ad-hoc model that evidences an excellent agreement between theory and experiments. Ker-AuNPs represent a new generation of multifunctional nanotherapeutics, and they constitute a new opportunity in drug-free and minimally invasive biomedical applications.
引用
收藏
页数:8
相关论文
共 48 条
[31]   Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles [J].
Pezzi, Luigia ;
De Sio, Luciano ;
Palermo, Giovanna ;
Veltri, Alessandro ;
Placido, Tiziana ;
Lucia Curri, Maria ;
Tabiryan, Nelson ;
Umeton, Cesare .
EMERGING LIQUID CRYSTAL TECHNOLOGIES XI, 2016, 9769
[32]   Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals [J].
Pezzi, Luigia ;
De Sio, Luciano ;
Veltri, Alessandro ;
Placido, Tiziana ;
Palermo, Giovanna ;
Comparelli, Roberto ;
Curri, Maria Lucia ;
Agostiano, Angela ;
Tabiryan, Nelson ;
Umeton, Cesare .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (31) :20281-20287
[33]   Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies [J].
Pierini, Filippo ;
Nakielski, Pawel ;
Urbanek, Olga ;
Pawlowska, Sylwia ;
Lanzi, Massimiliano ;
De Sio, Luciano ;
Kowalewski, Tomasz Aleksander .
BIOMACROMOLECULES, 2018, 19 (11) :4147-4167
[34]   Electroactive Layer-by-Layer Plasmonic Architectures Based on Au Nanorods [J].
Placido, Tiziana ;
Fanizza, Elisabetta ;
Cosma, Pinalysa ;
Striccoli, Marinella ;
Curri, M. Lucia ;
Comparelli, Roberto ;
Agostiano, Angela .
LANGMUIR, 2014, 30 (10) :2608-2618
[35]   Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions [J].
Richardson, Hugh H. ;
Carlson, Michael T. ;
Tandler, Peter J. ;
Hernandez, Pedro ;
Govorov, Alexander O. .
NANO LETTERS, 2009, 9 (03) :1139-1146
[36]   SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations [J].
Ros, Ida ;
Placido, Tiziana ;
Amendola, Vincenzo ;
Marinzi, Chiara ;
Manfredi, Norberto ;
Comparelli, Roberto ;
Striccoli, Marinella ;
Agostiano, Angela ;
Abbotto, Alessandro ;
Pedron, Danilo ;
Pilot, Roberto ;
Bozio, Renato .
PLASMONICS, 2014, 9 (03) :581-593
[37]   A Review of Keratin-Based Biomaterials for Biomedical Applications [J].
Rouse, Jillian G. ;
Van Dyke, Mark E. .
MATERIALS, 2010, 3 (02) :999-1014
[38]   Eco-friendly antimicrobial nanoparticles of keratin-metal ion complex [J].
Shankar, Shiv ;
Rhim, Jong-Whan .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 105
[39]   From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform [J].
Suarato, Giulia ;
Contardi, Marco ;
Perotto, Giovanni ;
Heredia-Guerrero, Jose' A. ;
Fiorentini, Fabrizio ;
Ceseracciu, Luca ;
Pignatelli, Cataldo ;
Debellis, Doriana ;
Bertorelli, Rosalia ;
Athanassiou, Athanassia .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 116
[40]   Remotely Triggerable Drug Delivery Systems [J].
Timko, Brian P. ;
Dvir, Tal ;
Kohane, Daniel S. .
ADVANCED MATERIALS, 2010, 22 (44) :4925-4943