Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions

被引:65
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
基金
英国科研创新办公室;
关键词
Ito equation; Painleve analysis; Multiple-soliton solutions; Lump solutions; NONLINEAR EVOLUTION-EQUATIONS; CONSERVATION-LAWS; WAVE SOLUTIONS;
D O I
10.1007/s11071-022-07517-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we study an extended integrable (3+1)-dimensional Ito equation, where its complete integrability is justified via Painleve analysis. The simplified Hirota's method is used to formally derive multiple-soliton solutions. Moreover, we obtain a general class of lump solutions by using symbolic computation with Maple. Lump solutions are furnished for specific cases of the parameters.
引用
收藏
页码:1929 / 1934
页数:6
相关论文
共 30 条
[1]   New exact solutions and conservation laws of a coupled Kadomtsev-Petviashvili system [J].
Adem, Abdullahi Rashid ;
Khalique, Chaudry Masood .
COMPUTERS & FLUIDS, 2013, 81 :10-16
[2]   Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: Exact traveling wave solutions and analysis [J].
Alquran, Marwan ;
Jaradat, Imad ;
Baleanu, Dumitru .
CHINESE JOURNAL OF PHYSICS, 2019, 58 :49-56
[3]   Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method [J].
Ebaid, A. .
PHYSICS LETTERS A, 2007, 365 (03) :213-219
[4]   ON A DIRECT PROCEDURE FOR THE QUASI-PERIODIC WAVE SOLUTIONS OF THE SUPERSYMMETRIC ITO'S EQUATION [J].
Fan, E. G. ;
Hon, Y. C. .
REPORTS ON MATHEMATICAL PHYSICS, 2010, 66 (03) :355-365
[5]   Symbolic methods to construct exact solutions of nonlinear partial differential equations [J].
Hereman, W ;
Nuseir, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :13-27
[6]  
Hirota R., 1980, Solitons, P157, DOI 10.1007/978-3-642-81448-8_5
[7]   RESONANCE OF SOLITONS IN ONE DIMENSION [J].
HIROTA, R ;
ITO, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (03) :744-748
[9]   Painleve analysis and invariant solutions of generalized fifth-order nonlinear integrable equation [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
NONLINEAR DYNAMICS, 2018, 94 (04) :2469-2477
[10]   Exact solutions and conservation laws of a coupled integrable dispersionless system [J].
Khalique, Chaudry Masood .
FILOMAT, 2012, 26 (05) :957-964