Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects

被引:64
|
作者
Yan, Yuanyuan [1 ]
Liu, Wenjun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Solitons; Asymmetric method; Ginzburg-Landau equation; Analytic soliton solution;
D O I
10.1016/j.aml.2019.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a complex cubic-quintic Ginzburg-Landau equation (CCQGLE) is investigated. Using the asymmetric method, the analytic one-soliton solution of the CCQGLE is obtained for the first time. Through analyzing the solutions obtained, the transmission of the soliton is controlled by changing the values of related parameters. Results of this paper contribute to obtain the analytic soliton solution of the higher-order CCQGLE. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [31] Impact of High-Order Effects on Soliton Explosions in the Complex Cubic-Quintic Ginzburg-Landau Equation
    Gurevich, Svetlana
    Schelte, Christian
    Javaloyes, Julien
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [32] Impact of high-order effects on soliton explosions in the complex cubic-quintic Ginzburg-Landau equation
    Gurevich, S., V
    Schelte, C.
    Javaloyes, J.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [33] Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation
    Shtyrina, Olga, V
    Yarutkina, Irina A.
    Skidin, Anton S.
    Podivilov, Evgeny, V
    Fedorukt, Mikhail P.
    OPTICS EXPRESS, 2019, 27 (05) : 6711 - 6718
  • [34] A collective variable approach for optical solitons in the cubic-quintic complex Ginzburg-Landau equation with third-order dispersion
    Fewo, S. I.
    Kofane, T. C.
    OPTICS COMMUNICATIONS, 2008, 281 (10) : 2893 - 2906
  • [35] Interaction of Two Pulsating Solitons with a Discrete Time Separation in Complex Cubic-Quintic Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 125 - 130
  • [36] Dynamical Behavior of the Random Field on the Pulsating and Snaking Solitons in Cubic-Quintic Complex Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [37] Dynamics of vortex and anti-vortex solitons in a vectorial cubic-quintic complex Ginzburg-Landau equation
    Nko'o, Marius Jeannot Nko'o
    Djazet, Alain
    Mandeng, Lucien Mandeng
    Fewo, Serge Ibraid
    Tchawoua, Clement
    Kofane, Timoleon Crepin
    Bemmo, David Tatchim
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [38] Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions
    Cisternas, Jaime
    Descalzi, Orazio
    Albers, Tony
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2016, 116 (20)
  • [39] Nonlinear structures of traveling waves in the cubic-quintic complex Ginzburg-Landau equation on a finite domain
    Tafo, J. B. Gonpe
    Nana, L.
    Kofane, T. C.
    PHYSICA SCRIPTA, 2013, 87 (06)
  • [40] Modulation instability of optical waves in the cubic-quintic complex Ginzburg-Landau equation with fourth-order dispersion and gain
    Hong, WP
    Park, SH
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (7-8): : 437 - 442