Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects

被引:64
|
作者
Yan, Yuanyuan [1 ]
Liu, Wenjun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Solitons; Asymmetric method; Ginzburg-Landau equation; Analytic soliton solution;
D O I
10.1016/j.aml.2019.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a complex cubic-quintic Ginzburg-Landau equation (CCQGLE) is investigated. Using the asymmetric method, the analytic one-soliton solution of the CCQGLE is obtained for the first time. Through analyzing the solutions obtained, the transmission of the soliton is controlled by changing the values of related parameters. Results of this paper contribute to obtain the analytic soliton solution of the higher-order CCQGLE. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [21] Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain
    Yan, Yuanyuan
    Liu, Wenjun
    Zhou, Qin
    Biswas, Anjan
    NONLINEAR DYNAMICS, 2020, 99 (02) : 1313 - 1319
  • [22] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    S. C. Mancas
    S. R. Choudhury
    Theoretical and Mathematical Physics, 2007, 152 : 1160 - 1172
  • [23] Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation
    Ding, Edwin
    Luh, Kyle
    Kutz, J. Nathan
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (06)
  • [24] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    Mancas, S. C.
    Choudhury, S. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (02) : 1160 - 1172
  • [25] Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [26] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    J. B. Gonpe Tafo
    L. Nana
    T. C. Kofane
    The European Physical Journal Plus, 127
  • [27] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    Tafo, J. B. Gonpe
    Nana, L.
    Kofane, T. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (07):
  • [28] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [29] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [30] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796