Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects

被引:64
|
作者
Yan, Yuanyuan [1 ]
Liu, Wenjun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Solitons; Asymmetric method; Ginzburg-Landau equation; Analytic soliton solution;
D O I
10.1016/j.aml.2019.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a complex cubic-quintic Ginzburg-Landau equation (CCQGLE) is investigated. Using the asymmetric method, the analytic one-soliton solution of the CCQGLE is obtained for the first time. Through analyzing the solutions obtained, the transmission of the soliton is controlled by changing the values of related parameters. Results of this paper contribute to obtain the analytic soliton solution of the higher-order CCQGLE. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [11] Higher-order complex cubic quintic Ginzburg-Landau equation: Chirped solitary waves
    Saha, Naresh
    Roy, Barnana
    Khare, Avinash
    EPL, 2023, 142 (02)
  • [12] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    Zhuravlev, MN
    Ostrovskaya, NV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (02) : 427 - 442
  • [13] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [14] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    M. N. Zhuravlev
    N. V. Ostrovskaya
    Journal of Experimental and Theoretical Physics, 2004, 99 : 427 - 442
  • [15] Bifurcations from stationary to pulsating solitons in the cubic-quintic complex Ginzburg-Landau equation
    Tsoy, EN
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 343 (06) : 417 - 422
  • [16] Breathing Solitons for the One-Dimensional Nonlinear Cubic-Quintic Complex Ginzburg-Landau Equation (cqCGLE)
    Razali, Nur Shafika Abel
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 131 - 136
  • [17] Traveling wavetrains in the complex cubic-quintic Ginzburg-Landau equation
    Mancas, SC
    Choudhury, SR
    CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 834 - 843
  • [18] Stability of dissipative solitons as solutions of asymmetrical complex cubic-quintic Ginzburg-Landau equation
    Skarka, V.
    Aleksic, N. B.
    Gauthier, D.
    Timotijevic, D. V.
    PIERS 2007 BEIJING: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PTS I AND II, PROCEEDINGS, 2007, : 1196 - +
  • [19] The modulation instability of shallow wake flows based on the higher-order generalized cubic-quintic complex Ginzburg-Landau equation
    Fu, Lei
    Han, Xiaofeng
    Dong, Huanhe
    Yang, Hongwei
    PHYSICS OF FLUIDS, 2023, 35 (02)
  • [20] Impact of spectral filtering on the stability of a stationary dissipative soliton in the complex cubic-quintic Ginzburg-Landau equation in the presence of higher-order effects
    Saadeu, Gaetan Kuetche
    Nana, Victor Bami
    Nana, Laurent
    RESULTS IN PHYSICS, 2022, 41