Basic Characteristics for PEN Film Surface Modification Using Atmospheric-Pressure Nonequilibrium Microwave Plasma Jet

被引:9
|
作者
Yuji, Toshifumi [1 ]
Urayama, Takuya [2 ]
Fujii, Shuitsu [2 ]
Iijima, Yoshitoki [3 ]
Suzaki, Yoshifumi [4 ]
Akatsuka, Hiroshi [5 ]
机构
[1] Miyazaki Univ, Miyazaki 8892192, Japan
[2] ADTEC Plasma Technol Co Ltd, Hiroshima, Japan
[3] JEOL Ltd, Tokyo 1968558, Japan
[4] Kagawa Univ, Takamatsu, Kagawa 760, Japan
[5] Tokyo Inst Technol, Tokyo, Japan
关键词
microwave plasma jet; rotational temperature; surface modification; polyethylene naphthalate film; contact angle; DISCHARGE; POLYPROPYLENE; POLYMERS;
D O I
10.1002/ecj.10207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To understand the mechanism of surface processing using an atmospheric-pressure nonequilibrium microwave discharge plasma jet, we used optical emission spectroscopy to measure the vibrational and rotational temperatures of plasma. A microwave (2.45 GHz) power supply was used to excite the plasma. The vibrational and rotational temperatures in the plasma were measured at approximately 0.18 and 0.22 eV. We also conducted plasma surface processing of polyethylene naphthalate (PEN) film to measure changes in the water contact angle before and after the PEN film was processed and as the rotational temperature of the plasma increased. Analysis of all the results from XPS and surface free energy as calculated from the contact angle confirmed that an improvement in hydrophilic properties of the PEN film surface was produced by the microwave discharge plasma jet. We conclude that the hydrophilicity of the PEN film surface improves as the rotational temperature of the plasma increases. (C) 2010 Wiley Periodicals, Inc. Electron Comm Jpn, 93(5): 42-49, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10207
引用
收藏
页码:42 / 49
页数:8
相关论文
共 50 条
  • [1] Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet
    Shaw, David
    West, Andrew
    Bredin, Jerome
    Wagenaars, Erik
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (06)
  • [2] Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification
    Cheng, Kuang-Yao
    Chang, Chia-Hsing
    Yang, Yi-Wei
    Liao, Guo-Chun
    Liu, Chih-Tung
    Wu, Jong-Shinn
    APPLIED SURFACE SCIENCE, 2017, 394 : 534 - 542
  • [3] Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet
    Kim, MC
    Song, DK
    Shin, HS
    Baeg, SH
    Kim, GS
    Boo, JH
    Han, JG
    Yang, SH
    SURFACE & COATINGS TECHNOLOGY, 2003, 171 (1-3) : 312 - 316
  • [4] Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets
    Baldanov, B. B.
    Semenov, A. P.
    Ranzhurov, Ts. V.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (05): : 1271 - 1275
  • [5] Surface Modification of Polycarbonate by an Atmospheric Pressure Argon Microwave Plasma Sheet
    Czylkowski, Dariusz
    Hrycak, Bartosz
    Sikora, Andrzej
    Moczala-Dusanowska, Magdalena
    Dors, Miroslaw
    Jasinski, Mariusz
    MATERIALS, 2019, 12 (15)
  • [6] Surface Modification of Polycarbonate by Atmospheric-Pressure Plasma Jets
    Mello, Carina B.
    Kostov, Konstantin G.
    Machida, Munemasa
    de Oliveira Hein, Luis Rogerio O.
    de Campos, Kamila Amato
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (11) : 2800 - 2805
  • [7] Experimental Study of Cold Atmospheric Pressure Plasma Jet and Its Application in the Surface Modification of Polypropylene
    Baniya, Hom Bahadur
    Guragain, Rajesh Prakash
    Baniya, Binod
    Subedi, Deepak Prasad
    REVIEWS OF ADHESION AND ADHESIVES, 2020, 8 (02): : 1 - 14
  • [8] Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition
    Narimisa, Mehrnoush
    Krcma, Frantisek
    Onyshchenko, Yuliia
    Kozakova, Zdenka
    Morent, Rino
    De Geyter, Nathalie
    POLYMERS, 2020, 12 (02)
  • [9] Basic characteristics of Ar/N2 atmospheric pressure nonequilibrium microwave discharge plasma jets
    Yuji, Toshifumi
    Fujioka, Kazunari
    Fujii, Shuitsu
    Akatsuka, Hiroshi
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 2 (04) : 473 - 475
  • [10] Surface modification of polymethylmethacrylate foils using an atmospheric pressure plasma jet in presence of water vapors
    Acsente, T.
    Ionita, M. D.
    Teodorescu, M.
    Marascu, V.
    Dinescu, G.
    THIN SOLID FILMS, 2016, 614 : 25 - 30