Soliton solutions and conservation laws for lossy nonlinear transmission line equation

被引:123
|
作者
Tchier, Fairouz [1 ]
Yusuf, Abdullahi [2 ,3 ]
Aliyu, Aliyu Isa [2 ,3 ]
Inc, Mustafa [2 ]
机构
[1] King Saud Univ, Dept Appl Math, POB 22452, Riyadh 11495, Saudi Arabia
[2] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[3] Fed Univ Dutse, Sci Fac, Dept Math, PMB 7156, Jigawa, Nigeria
关键词
NLTLs; Symmetries; RB sub-ODE; Nonlinear self-adjointness and Cls; (G'/G)-EXPANSION METHOD; EVOLUTION-EQUATIONS; WAVE SOLUTIONS;
D O I
10.1016/j.spmi.2017.04.003
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this article, the Lie symmetry and Ricatti-Bernoulli (RB) sub-ODE method are applied to obtain soliton solutions for nonlinear transmission line equation (NLTLs). The NLTLs is defined to be a structure whereby a short-duration pulses known as electrical solitons can be invented and disseminated. We compute conservation laws (Cls) via a non-linear selfadjointness approach. A suitable substitution for NLTLs is found and the obtained substitution makes the NLTLs equation a non-linearly self-adjoint. We establish Cls for NLTLs equation by the new Cls theorem presented by Ibragimov. We obtain trigonometric, algebraic and soliton solutions. The obtained solutions can be useful for describing the concentrations of transmission lines problems, for NLTLs. The parameters of the transmission line play a significant role in managing the original form of the soliton. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:320 / 336
页数:17
相关论文
共 50 条
  • [31] SOLITON-SOLUTIONS AND CONSERVATION-LAWS
    CORCIOVEI, A
    BUZATU, FD
    REVUE ROUMAINE DE PHYSIQUE, 1984, 29 (07): : 577 - 586
  • [32] ASYMPTOTIC SOLUTIONS AND CONSERVATION LAWS FOR NONLINEAR SCHRODINGER EQUATION .2.
    SEGUR, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) : 714 - 716
  • [33] An extended Korteweg–de Vries equation: multi-soliton solutions and conservation laws
    Yakup Yıldırım
    Emrullah Yaşar
    Nonlinear Dynamics, 2017, 90 : 1571 - 1579
  • [34] Invariance, Conservation Laws, and Exact Solutions of the Nonlinear Cylindrical Fin Equation
    Ali, Saeed M.
    Bokhari, Ashfaque H.
    Zaman, Fiazuddin D.
    Kara, Abdul H.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (5-6): : 195 - 198
  • [35] Almost conservation laws and global rough solutions to a nonlinear Schrodinger equation
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (5-6) : 659 - 682
  • [36] ASYMPTOTIC SOLUTIONS AND CONSERVATION LAWS FOR NONLINEAR SCHRODINGER EQUATION .1.
    SEGUR, H
    ABLOWITZ, MJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) : 710 - 713
  • [37] SYMMETRIES, INVARIANT SOLUTIONS AND CONSERVATION-LAWS OF THE NONLINEAR ACOUSTICS EQUATION
    SHAROMET, NO
    ACTA APPLICANDAE MATHEMATICAE, 1989, 15 (1-2) : 83 - 120
  • [38] On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line
    Fendzi-Donfack, Emmanuel
    Nguenang, Jean Pierre
    Nana, Laurent
    NONLINEAR DYNAMICS, 2021, 104 (01) : 691 - 704
  • [39] Lie symmetries, exact wave solutions and conservation laws of nonlinear Bogovalenskii Breaking-Soliton equation for Nerve pulse propagation
    Kumar M.
    Anand S.
    International Journal of Applied and Computational Mathematics, 2024, 10 (1)
  • [40] On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line
    Emmanuel Fendzi-Donfack
    Jean Pierre Nguenang
    Laurent Nana
    Nonlinear Dynamics, 2021, 104 : 691 - 704